欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集

程序员文章站 2022-03-08 18:43:51
基于mnist数据集的逻辑回归模型做十分类任务没有隐含层的softmax regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶特征,...

基于mnist数据集的逻辑回归模型做十分类任务

没有隐含层的softmax regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线、竖线、圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类。

import tensorflow as tf
import numpy as np
import input_data
print('download and extract mnist dataset')
mnist = input_data.read_data_sets('data/', one_hot=true) # one_hot=true意思是编码格式为01编码
print("tpye of 'mnist' is %s" % (type(mnist)))
print("number of train data is %d" % (mnist.train.num_examples))
print("number of test data is %d" % (mnist.test.num_examples))
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print("mnist loaded")

"""
print("type of 'trainimg' is %s"    % (type(trainimg)))
print("type of 'trainlabel' is %s"  % (type(trainlabel)))
print("type of 'testimg' is %s"     % (type(testimg)))
print("type of 'testlabel' is %s"   % (type(testlabel)))
print("------------------------------------------------")
print("shape of 'trainimg' is %s"   % (trainimg.shape,))
print("shape of 'trainlabel' is %s" % (trainlabel.shape,))
print("shape of 'testimg' is %s"    % (testimg.shape,))
print("shape of 'testlabel' is %s"  % (testlabel.shape,))

"""
x = tf.placeholder(tf.float32, [none, 784])
y = tf.placeholder(tf.float32, [none, 10]) # none is for infinite
w = tf.variable(tf.zeros([784, 10])) # 为了方便直接用0初始化,可以高斯初始化
b = tf.variable(tf.zeros([10])) # 10分类的任务,10种label,所以只需要初始化10个b
pred = tf.nn.softmax(tf.matmul(x, w) + b) # 前向传播的预测值
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1])) # 交叉熵损失函数
optm = tf.train.gradientdescentoptimizer(0.01).minimize(cost)
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()对比预测值的索引和真实label的索引是否一样,一样返回true,不一样返回false
accr = tf.reduce_mean(tf.cast(corr, tf.float32))
init = tf.global_variables_initializer() # 全局参数初始化器
training_epochs = 100 # 所有样本迭代100次
batch_size = 100 # 每进行一次迭代选择100个样本
display_step = 5
# session
sess = tf.session() # 定义一个session
sess.run(init) # 在sess里run一下初始化操作
# mini-batch learning
for epoch in range(training_epochs): # 每一个epoch进行循环
    avg_cost = 0. # 刚开始损失值定义为0
    num_batch = int(mnist.train.num_examples/batch_size)
    for i in range(num_batch): # 每一个batch进行选择
        batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 通过next_batch()就可以一个一个batch的拿数据,
        sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) # run一下用梯度下降进行求解,通过placeholder把x,y传进来
        avg_cost += sess.run(cost, feed_dict={x: batch_xs, y:batch_ys})/num_batch
    # display
    if epoch % display_step == 0: # display_step之前定义为5,这里每5个epoch打印一下
        train_acc = sess.run(accr, feed_dict={x: batch_xs, y:batch_ys})
        test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("epoch: %03d/%03d cost: %.9f train accuracy: %.3f test accuracy: %.3f"
              % (epoch, training_epochs, avg_cost, train_acc, test_acc))
print("done")

迭代100次跑一下模型,最终,在测试集上可以达到92.2%的准确率,虽然还不错,但是还达不到实用的程度。手写数字的识别的主要应用场景是识别银行支票,如果准确率不够高,可能会引起严重的后果。

epoch: 095/100 loss: 0.283259882 train_acc: 0.940 test_acc: 0.922

插一些知识点,关于tensorflow中一些函数的用法

sess = tf.interactivesession()
arr = np.array([[31, 23,  4, 24, 27, 34],
                [18,  3, 25,  0,  6, 35],
                [28, 14, 33, 22, 30,  8],
                [13, 30, 21, 19,  7,  9],
                [16,  1, 26, 32,  2, 29],
                [17, 12,  5, 11, 10, 15]])
在tensorflow中打印要用.eval()
tf.rank(arr).eval() # 打印矩阵arr的维度
tf.shape(arr).eval() # 打印矩阵arr的大小
tf.argmax(arr, 0).eval() # 打印最大值的索引,参数0为按列求索引,1为按行求索引

以上就是tensorflow教程softmax逻辑回归识别手写数字mnist数据集的详细内容,更多关于softmax逻辑回归mnist数据集手写识别的资料请关注其它相关文章!