欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Scrapy分布式爬虫打造搜索引擎-(八)elasticsearch结合django搭建搜索引擎

程序员文章站 2022-05-23 11:08:27
...

Python分布式爬虫打造搜索引擎

基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站

推荐前往我的个人博客进行阅读:http://blog.mtianyan.cn/
目录分章效果更佳哦

分章查看目录:

  1. Scrapy分布式爬虫打造搜索引擎 - (一)基础知识
  2. Scrapy分布式爬虫打造搜索引擎 - (二)伯乐在线爬取所有文章
  3. Scrapy分布式爬虫打造搜索引擎 - (三)知乎网问题和答案爬取
  4. Scrapy分布式爬虫打造搜索引擎 - (四)通过CrawlSpider对拉勾网进行整站爬取
  5. Scrapy分布式爬虫打造搜索引擎-(五)爬虫与反爬虫的战争
  6. Scrapy分布式爬虫打造搜索引擎-(六)scrapy进阶开发
  7. Scrapy分布式爬虫打造搜索引擎-(七)scrapy-redis 分布式爬虫
  8. Scrapy分布式爬虫打造搜索引擎-(八)elasticsearch结合django搭建搜索引擎

八、elasticsearch搭建搜索引擎

elasticsearch介绍:一个基于lucene的搜索服务器,分布式多用户的全文搜索引擎 java开发的 基于restful web接口
自己搭建的网站或者程序,添加搜索功能比较困难
所以我们希望搜索解决方案要高效
零配置并且免费
能够简单的通过json和http与搜索引擎交互
希望搜索服务很稳定
简单的将一台服务器扩展到多台服务器

内部功能:
分词 搜索结果打分 解析搜索要求
全文搜索引擎:solr sphinx
很多大公司都用elasticsearch 戴尔 Facebook 微软等等

  1. elasticsearch对Lucene进行了封装,既能存储数据,又能分析数据,适合与做搜索引擎
    关系数据搜索缺点:
    无法对搜素结果进行打分排序
    没有分布式,搜索麻烦,对程序员的要求比较高
    无法解析搜索请求,对搜索的内容无法进行解析,如分词等
    数据多了,效率低
    需要分词,把关系,数据,重点分出来

  2. nosql数据库:
    文档数据库 json代码,在关系数据库中数据存储,需要存到多个表,内部有多对多等关系之类的,需要涉及到多个表才能将json里面的内容存下来,nosql直接将一个json的内容存起来,作为一个文档存档到数据库。
    mongodb:

1. elasticsearch安装与配置

  1. java sdk安装
  1. elasticsearch安装官网下载 不使用官网的版本,提供原始的插件不多
  2. elasticsearc-rtf github搜索,中文发行版,已经安装了很多插件 https://github.com/medcl/elasticsearch-rtf
  3. 运行elasticsearch的方法,在bin文件目录下进入命令行,执行elasticsearch.bat
    5.配置文件:elasticsearch-rtf\elasticsearch-rtf-master\config\elasticsearch.yml
查看elasticsearch安装情况.png

2. elasticsearch两个重要插件:head和kibana的安装

head插件相当于Navicat,用于管理数据库,基于浏览器

https://github.com/mobz/elasticsearch-head

Running with built in server

git clone git://github.com/mobz/elasticsearch-head.git
cd elasticsearch-head
npm install
npm run start
open http://localhost:9100/

配置elasticsearch与heade互通

head安装完成

kibana.bat

kibana.png

2. elasticsearch基础概念

  1. 集群:一个或多个节点组织在一起
  2. 节点:一个集群中的一台服务器
  3. 分片:索引划分为多份的能力,允许水平分割,扩展容量,多个分片响应请求
  4. 副本:分片的一份或多分,一个节点失败,其他节点顶上

|index | 数据库|
|type | 表|
|document | 行|
|fields | 列|

集合搜索和保存:增加了五种方法:
OPTIONS & PUT & DELETE & TRACE & CONNECT

3. 倒排索引:

倒排索引
倒排索引

倒排索引待解决的问题:

倒排索引
创建索引
head查看索引.png

4. elasticsearch命令

PUT lagou/job/1
1为id

PUT lagou/job/
不指明id自动生成uuid。

修改部分字段
POST lagou/job/1/_update

DELETE lagou/job/1

elasticserach批量操作:

查询index为testdb下的job1表的id为1和job2表的id为2的数据

GET _mget
{
    "docs":[
    {
    "_index":"testdb",
    "_type":"job1",
    "_id":1
    },
    {
    "_index":"testdb",
    "_type":"job2",
    "_id":2
    }
    ]
}

index已经指定了,所有在doc中就不用指定了

GET testdb/_mget{
    "docs":[
    {
    "_type":"job1",
    "_id":1
    },
    {
    "_type":"job2",
    "_id":2
    }
    ]
}

连type都一样,只是id不一样

GET testdb/job1/_megt
{
    "docs":[
    {
    "_id":1
    },
    {
    "_id":2
    }
    ]
}

或者继续简写

GET testdb/job1/_megt
{
    "ids":[1,2]
}

elasticsearch的bulk批量操作:可以合并多个操作,比如index,delete,update,create等等,包括从一个索引到另一个索引:

  • action_and_meta_data\n
  • option_source\n
  • action_and_meta_data\n
  • option_source\n
  • ....
  • action_and_meta_data\n
  • option_source\n

每个操作都是由两行构成,除了delete除外,由元信息行和数据行组成
注意数据不能美化,即只能是两行的形式,而不能是经过解析的标准的json排列形式,否则会报错

POST _bulk
{"index":...}
{"field":...}

elasticserach的mapping映射

elasticserach的mapping映射:创建索引时,可以预先定义字段的类型以及相关属性,每个字段定义一种类型,属性比mysql里面丰富,前面没有传入,因为elasticsearch会根据json源数据来猜测是什么基础类型。M挨批评就是我们自己定义的字段的数据类型,同时告诉elasticsearch如何索引数据以及是否可以被搜索。
作用:会让索引建立的更加细致和完善,对于大多数是不需要我们自己定义

相关属性的配置

  • String类型: 两种text keyword。text会对内部的内容进行分析,索引,进行倒排索引等,为设置为keyword则会当成字符串,不会被分析,只能完全匹配才能找到String。 在es5已经被废弃了
  • 日期类型:date 以及datetime等
  • 数据类型:integer long double等等
  • bool类型
  • binary类型
  • 复杂类型:object nested
  • geo类型:geo-point地理位置
  • 专业类型:ip competition
  • object :json里面内置的还有下层{}的对象
  • nested:数组形式的数据

elasticserach查询:

大概分为三类:

  • 基本查询:
  • 组合查询:
  • 过滤:查询同时,通过filter条件在不影响打分的情况下筛选数据

match查询:

后面为关键词,关于python的都会提取出来,match查询会对内容进行分词,并且会自动对传入的关键词进行大小写转换,内置ik分词器会进行切分,如python网站,只要搜到存在的任何一部分,都会返回
GET lagou/job/_search

{
    "query":{
        "match":{
            "title":"python"
        }
    }
}

term查询

区别,对传入的值不会做任何处理,就像keyword,只能查包含整个传入的内容的,一部分也不行,只能完全匹配

terms查询

title里传入多个值,只要有一个匹配,就会返回结果

控制查询的返回数量

GET lagou/_serach
{
    "query":{
        "match":{
            "title":"python"
        }
    },
    "form":1,
    "size":2
}

通过这里就可以完成分页处理洛,从第一条开始查询两条

match_all 返回所有
GET lagou/_search
{
"query":{
"match_all":{}
}
}

match_phrase查询 短语查询

GET lagou/_search
{
    "query":{
        "match_phrase":{
            "title":{
                "query":"python系统",
                "slop":6
            }
        }
    }
}

python系统,将其分词,分为词条,满足词条里面的所有词才会返回结果,slop参数说明两个词条之间的最小距离

multi_match查询

比如可以指定多个字段,比如查询title和desc这两个字段包含python的关键词文档

GET lagou/_search
{
    "query":{
        "multi_match":{
            "query":"python",
            "fileds":["title^3","desc"]
        }
    }
}

query为要查询的关键词 fileds在哪些字段里查询关键词,只要其中某个字段中出现了都返回

^3的意思为设置权重,在title中找到的权值为在desc字段中找到的权值的三倍

指定返回字段

GET lagou/_search{
    "stored_fields":["title","company_name"],
    "query":{
        "match":{
            "title":"pyhton"
        }
    }
}

通过sort把结果排序

GET lagou/_search
{
    "query";{
        "match_all":{}
    },
    "sort":[{
        "comments":{
            "order":"desc"
        }
    }]
}

sort是一个数组,里面是一个字典,key就是要sort的字段,asc desc是升序降序的意思

查询范围 range查询
GET lagou/_search
{
"query";{
"range":{
"comments":{
"gte":10,
"lte":20,
"boost":2.0
}
}
}
}

range是在query里面的,boost是权重,gte lte是大于等于 小于等于的意思
对时间的范围查询,则是以字符串的形式传入

wildcard模糊查询,可以使用通配符
*

组合查询:bool查询

bool查询包括了must should must_not filter来完成
格式如下:

bool:{
    "filter":[],
    "must":[],
    "should":[],
    "must_not":[],
}

5. 把爬取的数据保存至elasticsearch

class ElasticsearchPipeline(object):
    #将数据写入到es中

    def process_item(self, item, spider):
        #将item转换为es的数据
        item.save_to_es()

        return item

elasticsearch-dsl-py

High level Python client for Elasticsearch

pip install elasticsearch-dsl

items.py 中将数据保存至es

 def save_to_es(self):
        article = ArticleType()
        article.title = self['title']
        article.create_date = self["create_date"]
        article.content = remove_tags(self["content"])
        article.front_image_url = self["front_image_url"]
        if "front_image_path" in self:
            article.front_image_path = self["front_image_path"]
        article.praise_nums = self["praise_nums"]
        article.fav_nums = self["fav_nums"]
        article.comment_nums = self["comment_nums"]
        article.url = self["url"]
        article.tags = self["tags"]
        article.meta.id = self["url_object_id"]

        article.suggest = gen_suggests(ArticleType._doc_type.index, ((article.title,10),(article.tags, 7)))

        article.save()

        redis_cli.incr("jobbole_count")

        return

6. elasticsearch结合django搭建搜索引擎

获取elasticsearch的查询接口

 body={
                    "query":{
                        "multi_match":{
                            "query":key_words,
                            "fields":["tags", "title", "content"]
                        }
                    },
                    "from":(page-1)*10,
                    "size":10,
                    "highlight": {
                        "pre_tags": ['<span class="keyWord">'],
                        "post_tags": ['</span>'],
                        "fields": {
                            "title": {},
                            "content": {},
                        }
                    }
                }

使django与其交互。

搜索界面
结果界面