欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Scrapy分布式爬虫打造搜索引擎 - (一)基础知识

程序员文章站 2022-05-23 11:08:33
...

Python分布式爬虫打造搜索引擎

基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站

推荐前往我的个人博客进行阅读:http://blog.mtianyan.cn/
目录分章效果更佳哦

分章查看目录:

  1. Scrapy分布式爬虫打造搜索引擎 - (一)基础知识
  2. Scrapy分布式爬虫打造搜索引擎 - (二)伯乐在线爬取所有文章
  3. Scrapy分布式爬虫打造搜索引擎 - (三)知乎网问题和答案爬取
  4. Scrapy分布式爬虫打造搜索引擎 - (四)通过CrawlSpider对拉勾网进行整站爬取
  5. Scrapy分布式爬虫打造搜索引擎-(五)爬虫与反爬虫的战争
  6. Scrapy分布式爬虫打造搜索引擎-(六)scrapy进阶开发
  7. Scrapy分布式爬虫打造搜索引擎-(七)scrapy-redis 分布式爬虫
  8. Scrapy分布式爬虫打造搜索引擎-(八)elasticsearch结合django搭建搜索引擎
    未来是什么时代?是数据时代!数据分析服务、互联网金融,数据建模、自然语言处理、医疗病例分析……越来越多的工作会基于数据来做,而爬虫正是快速获取数据最重要的方式,相比其它语言,Python爬虫更简单、高效

一、基础知识学习:

爬取策略的深度优先和广度优先

目录:

  1. 网站的树结构
  1. 深度优先算法和实现
  2. 广度优先算法和实现

网站url树结构分层设计:

  • bogbole.com
    • blog.bogbole.com
    • python.bogbole.com
      • python.bogbole.com/123

环路链接问题:

从首页到下面节点。
但是下面的链接节点又会有链接指向首页

所以:我们需要对于链接进行去重

1. 深度优先
2. 广度优先

跳过已爬取的链接
对于二叉树的遍历问题

深度优先(递归实现):
顺着一条路,走到最深处。然后回头

广度优先(队列实现):
分层遍历:遍历完儿子辈。然后遍历孙子辈

Python实现深度优先过程code:

def depth_tree(tree_node):
    if tree_node is not None:
        print (tree_node._data)
        if tree_node._left is not None:
            return depth_tree(tree_node.left)
        if tree_node._right is not None:
            return depth_tree(tree_node,_right)

Python实现广度优先过程code:

def level_queue(root):
    #利用队列实现树的广度优先遍历
    if root is None:
        return
    my_queue = []
    node = root
    my_queue.append(node)
    while my_queue:
        node = my_queue.pop(0)
        print (node.elem)
        if node.lchild is not None:
            my_queue.append(node.lchild)
        if node.rchild is not None:
            my_queue.append(node.rchild)

爬虫网址去重策略

  1. 将访问过的url保存到数据库中
  2. 将url保存到set中。只需要O(1)的代价就可以查询到url

100000000*2byte*50个字符/1024/1024/1024 = 9G

  1. url经过md5等方法哈希后保存到set中,将url压缩到固定长度而且不重复
  2. 用bitmap方法,将访问过的url通过hash函数映射到某一位
  3. bloomfilter方法对bitmap进行改进,多重hash函数降低冲突

scrapy去重使用的是第三种方法:后面分布式scrapy-redis会讲解bloomfilter方法。

Python字符串编码问题解决:

  1. 计算机只能处理数字,文本转换为数字才能处理,计算机中8个bit作为一个字节,
    所以一个字节能表示的最大数字就是255
  1. 计算机是美国人发明的,所以一个字节就可以标识所有单个字符
    ,所以ASCII(一个字节)编码就成为美国人的标准编码
  2. 但是ASCII处理中文明显不够,中文不止255个汉字,所以中国制定了GB2312编码
    ,用两个字节表示一个汉字。GB2312将ASCII也包含进去了。同理,日文,韩文,越来越多的国家为了解决这个问题就都发展了一套编码,标准越来越多,如果出现多种语言混合显示就一定会出现乱码
  3. 于是unicode出现了,它将所有语言包含进去了。
  4. 看一下ASCII和unicode编码:
    1. 字母A用ASCII编码十进制是65,二进制 0100 0001
    2. 汉字"中" 已近超出ASCII编码的范围,用unicode编码是20013二进制是01001110 00101101
    3. A用unicode编码只需要前面补0二进制是 00000000 0100 0001
  5. 乱码问题解决的,但是如果内容全是英文,unicode编码比ASCII编码需要多一倍的存储空间,传输也会变慢。
  6. 所以此时出现了可变长的编码"utf-8" ,把英文:1字节,汉字3字节,特别生僻的变成4-6字节,如果传输大量的英文,utf8作用就很明显。

读取文件,进行操作时转换为unicode编码进行处理
保存文件时,转换为utf-8编码。以便于传输
读文件的库会将转换为unicode

python2 默认编码格式为ASCII,Python3 默认编码为 utf-8

#python3
import sys
sys.getdefaultencoding()
s.encoding('utf-8')
#python2
import sys
sys.getdefaultencoding()
s = "我和你"
su = u"我和你"
~~s.encode("utf-8")#会报错~~
s.decode("gb2312").encode("utf-8")
su.encode("utf-8")