吴恩达作业8:三层神经网络实现手势数字的识别(基于tensorflow)
程序员文章站
2022-05-22 10:35:51
...
数据集的载入,随机产生mini-batch放在tf_utils.py,代码如下
import h5py
import numpy as np
import tensorflow as tf
import math
def load_dataset():
train_dataset = h5py.File('datasets/train_signs.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('datasets/test_signs.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
def random_mini_batches(X, Y, mini_batch_size, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[1] # number of training examples
mini_batches = []
np.random.seed(seed)
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation]#.reshape((Y.shape[0],m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def convert_to_one_hot(Y, C):
##Y.reshape(-1) 变成一行
Y = np.eye(C)[Y.reshape(-1)].T
return Y
def predict(X, parameters):
W1 = tf.convert_to_tensor(parameters["W1"])
b1 = tf.convert_to_tensor(parameters["b1"])
W2 = tf.convert_to_tensor(parameters["W2"])
b2 = tf.convert_to_tensor(parameters["b2"])
W3 = tf.convert_to_tensor(parameters["W3"])
b3 = tf.convert_to_tensor(parameters["b3"])
params = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
x = tf.placeholder("float", [12288, 1])
z3 = forward_propagation_for_predict(x, params)
p = tf.argmax(z3)
sess = tf.Session()
prediction = sess.run(p, feed_dict = {x: X})
return prediction
def forward_propagation_for_predict(X, parameters):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
the shapes are given in initialize_parameters
Returns:
Z3 -- the output of the last LINEAR unit
"""
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
# Numpy Equivalents:
Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3
return Z3
首先看数据集:
import tf_utils
import cv2
train_set_x_orig, train_set_Y, test_set_x_orig, test_set_Y, classes = tf_utils.load_dataset()
print('训练样本={}'.format(train_set_x_orig.shape))
print('训练样本标签={}'.format(train_set_Y.shape))
print('测试样本={}'.format(test_set_x_orig.shape))
print('测试样本标签={}'.format(test_set_Y.shape))
print('第五个样本={}'.format(train_set_Y[0,5]))
cv2.imshow('1.jpg',train_set_x_orig[5,:,:,:])
cv2.waitKey()
打印结果:可看出1080个训练样本,size为(64,64,3),其中手势数字用相应的数字代表,故后面要处理成one-hot(samples,6)
利用三层神经网络,W1=(25,64*64*3),W2=(12,25),W1=(6,12),输入X=(64*64*3,samples),最终y_pred=(6,samples),做一个转置与给定的真实y做损失,代码如下:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tf_utils
import cv2
"""
创建 placeholder
"""
def create_placeholder(n_x,n_y):
X=tf.placeholder(tf.float32,shape=[n_x,None],name='X')
Y = tf.placeholder(tf.float32, shape=[n_y, None], name='Y')
return X,Y
"""
初始化权重
"""
def initialize_parameters():
tf.set_random_seed(1)
W1=tf.get_variable(name='W1',shape=[25,12288],dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(seed=1))
b1 = tf.get_variable(name='b1', shape=[25, 1], dtype=tf.float32,
initializer=tf.zeros_initializer())
W2 = tf.get_variable(name='W2', shape=[12, 25], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(seed=1))
b2 = tf.get_variable(name='b2', shape=[12, 1], dtype=tf.float32,
initializer=tf.zeros_initializer())
W3 = tf.get_variable(name='W3', shape=[6, 12], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(seed=1))
b3 = tf.get_variable(name='b3', shape=[6, 1], dtype=tf.float32,
initializer=tf.zeros_initializer())
parameters={'W1': W1,
'b1': b1,
'W2': W2,
'b2': b2,
'W3': W3,
'b3': b3}
return parameters
"""
one-hot编码
"""
def convert_one_hot(Y,C):
one_hot=np.eye(C)[Y.reshape(-1)].T
return one_hot
"""
前向传播
"""
def forward_propagation(X,parameters):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
Z1=tf.add(tf.matmul(W1,X),b1)
A1=tf.nn.relu(Z1)
Z2 = tf.add(tf.matmul(W2, A1) , b2)
A2 = tf.nn.relu(Z2)
Z3 = tf.add(tf.matmul(W3, A2) , b3)
return Z3
"""
计算损失值
"""
def compute_cost(Z3,Y):
Z_input=tf.transpose(Z3) ##转置
Y = tf.transpose(Y) ####tf.nn.softmax_cross_entropy_w 要求shape是(number of examples,num_class)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=Z_input,labels=Y))
return cost
"""
构建模型
"""
def model(train_X,train_Y,test_X,test_Y,learning_rate,num_pochs,minibatch_size):
tf.set_random_seed(1)
seed=3
(n_x,m)=train_X.shape #(12288,1080)
costs=[]
n_y=train_Y.shape[0] #(6,1080)
X, Y = create_placeholder(n_x, n_y)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
#print(Z3)
cost = compute_cost(Z3, Y)
optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(num_pochs):
epoch_cost=0
mini_batches=tf_utils.random_mini_batches(train_X,train_Y,minibatch_size,seed)
num_minibatches=int(m/minibatch_size)
for mini_batche in mini_batches:
(mini_batche_X,mini_batche_Y)=mini_batche
_,temp_cost=sess.run([optimizer,cost],feed_dict={X:mini_batche_X,Y:mini_batche_Y})
epoch_cost += temp_cost / num_minibatches
if i%100==0:
#cost=sess.run(cost,feed_dict={X:mini_batche_X,Y:mini_batche_Y})
print('after {} iterations minibatch_cost={}'.format(i,epoch_cost))
costs.append(epoch_cost)
plt.plot(costs)
plt.xlabel('iterations')
plt.ylabel('cost')
plt.title('learning_rate={}'.format(learning_rate))
plt.show()
parameters=sess.run(parameters)
#print('parameters={}'.format(parameters))
correct_prediction=tf.equal(tf.argmax(Z3,0),tf.argmax(Y,0))##0 代表按列取索引最大值 1代表行索引最大值
accuarcy=tf.reduce_mean(tf.cast(correct_prediction,'float'))
print('train accuarcy is',sess.run(accuarcy,feed_dict={X: train_X,Y: train_Y}))
print('test accuarcy is ',sess.run(accuarcy,feed_dict={X: test_X, Y: test_Y}))
return parameters
"""
测试模型
"""
def test_model():
train_set_x_orig, train_set_Y, test_set_x_orig, test_set_Y, classes = tf_utils.load_dataset()
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],
train_set_x_orig.shape[1] * train_set_x_orig.shape[2] * 3).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],
test_set_x_orig.shape[1] * test_set_x_orig.shape[2] * 3).T
train_X = train_set_x_flatten / 255 #(12288,1080)
test_X = test_set_x_flatten / 255
train_Y = convert_one_hot(train_set_Y,6)#(6,1080)
#print('train_y',train_Y.shape)
test_Y = convert_one_hot(test_set_Y, 6)
parameters=model(train_X, train_Y, test_X, test_Y, learning_rate=0.0001, num_pochs=1000, minibatch_size=32)
img = cv2.imread('thumbs_up.jpg')
imgsize = cv2.resize(img, (64, 64), interpolation=cv2.INTER_CUBIC).reshape(1,64*64*3).T
cv2.imshow('imgsize', imgsize)
image_predict=tf_utils.predict(imgsize,parameters)
print(image_predict)
if __name__ == '__main__':
test_model()
打印结果:
下图的预测结果是1 符合
上一篇: python用百度云接口实现通用文字识别
下一篇: Android手写签名