OpenCV实现Support Vector Machine(SVM)
程序员文章站
2022-05-21 20:29:31
...
#include "stdafx.h"
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\core\core.hpp>
#include <opencv2\ml\ml.hpp>
using namespace cv;
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
//要呈现的数据
int width = 1920, height = 1080;
Mat image = Mat::zeros(height, width, CV_8UC3);
//标签
float labels[4] = { 1.0, -1.0, -1.0, -1.0 };
Mat labelsMat(4, 1, CV_32FC1, labels);
cout << labelsMat << endl;
//设置训练数据
float trainingData[4][2] = { { 501, 10 }, { 255, 10 }, { 501, 255 }, { 10, 501 } };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
//设置SVM参数
CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
//训练SVM
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
Vec3b green(0, 255, 0), blue(255, 0, 0);
//显示SVM的决定区
for (int i = 0; i < image.rows; i++)
{
for (int j = 0; j < image.cols; j++)
{
Mat sampleMat = (Mat_<float>(1, 2) << j, i);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(i, j) = green;
else if (response == -1)
image.at<Vec3b>(i, j) = blue;
}
}
//显示训练数据
int thickness = -1;
int lineType = 8;
circle(image, Point(501, 10), 5, Scalar(0, 0, 0), thickness, lineType);
circle(image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle(image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle(image, Point(10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
//显示支持向量机
thickness = 2;
lineType = 8;
int c = SVM.get_support_vector_count();
for (int i = 0; i < c; i++)
{
const float *v = SVM.get_support_vector(i);
circle(image, Point((int)v[0], (int)v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
//显示结果
imshow("SVM Simple Example", image);
waitKey(0);
system("pause");
return 0;
}
推荐阅读
-
基于Scikit-Learn、Keras和TensorFlow2支持向量机(Support Vector Machine)
-
OpenCV:使用python-cv2+Hog特征+SVM实现狮子识别
-
python+opencv3.4.0 实现HOG+SVM行人检测的示例代码
-
人脸识别实战之Opencv+SVM实现人脸识别
-
OpenCV实现Support Vector Machine(SVM)
-
Deep Learning using Linear Support Vector Machines的简单实现
-
Python实现Support Vector Machine算法
-
Support Vector Machine
-
[Matlab] Support Vector Regression二次规划实现
-
python+opencv3.4.0 实现HOG+SVM行人检测的示例代码