欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python实现Support Vector Machine算法

程序员文章站 2022-05-21 19:58:30
...

Support Vector Machine或简称SVM可翻译为支持向量机,是机器学习中常用的分类算法,它比上文介绍的KNN算法要复杂的多。为了理解这个算法的基本原理,本帖使用Python实现SVM算法。

如果你不知道SVM为何物,参看:

Convex Optimization相关资源:

代码:

# -*- coding: utf-8 -*-
import numpy as np
from matplotlib import pyplot
import math
import sys


class SVM(object):
    def __init__(self, visual=True):
        self.visual = visual
        self.colors = {1: 'r', -1: 'b'}
        if self.visual:
            self.fig = pyplot.figure()
            self.ax = self.fig.add_subplot(1, 1, 1)

    def train(self, data):
        self.data = data
        opt_dict = {}
        transforms = [[1, 1],
                      [-1, 1],
                      [-1, -1],
                      [1, -1]]
        # 找到数据集中最大值和最小值
        """
        all_data = []
        for y in self.data:
            for features in self.data[y]:
                for feature in features:
                    all_data.append(feature)

        print(all_data)
        self.max_feature_value = max(all_data)
        self.min_feature_value = min(all_data)
        print(self.max_feature_value, self.min_feature_value)
        """
        self.max_feature_value = float('-inf')  # -sys.maxint - 1   Python3替换为了sys.maxsize
        self.min_feature_value = float('inf')  # sys.maxint
        for y in self.data:
            for features in self.data[y]:
                for feature in features:
                    if feature > self.max_feature_value:
                        self.max_feature_value = feature
                    if feature < self.min_feature_value:
                        self.min_feature_value = feature
        print(self.max_feature_value, self.min_feature_value)
        # 和梯度下降一样,定义每一步的大小;开始快,然后慢,越慢越耗时
        step_sizes = [self.max_feature_value * 0.1, self.max_feature_value * 0.01, self.max_feature_value * 0.001]

        b_range_multiple = 5
        b_multiple = 5
        lastest_optimum = self.max_feature_value * 10
        for step in step_sizes:
            w = np.array([lastest_optimum, lastest_optimum])
            optimized = False
            while not optimized:
                for b in np.arange(self.max_feature_value * b_range_multiple * -1,
                                   self.max_feature_value * b_range_multiple, step * b_multiple):
                    for transformation in transforms:
                        w_t = w * transformation
                        found_option = True
                        for i in self.data:
                            for x in self.data[i]:
                                y = i
                                if not y * (np.dot(w_t, x) + b) >= 1:
                                    found_option = False
                                    # print(x,':',y*(np.dot(w_t, x)+b))  逐渐收敛
                        if found_option:
                            opt_dict[np.linalg.norm(w_t)] = [w_t, b]
                if w[0] < 0:
                    optimized = True
                else:
                    w = w - step

            norms = sorted([n for n in opt_dict])
            opt_choice = opt_dict[norms[0]]
            self.w = opt_choice[0]
            self.b = opt_choice[1]
            print(self.w, self.b)
            lastest_optimum = opt_choice[0][0] + step * 2

    def predict(self, features):
        classification = np.sign(np.dot(features, self.w) + self.b)
        if classification != 0 and self.visual:
            self.ax.scatter(features[0], features[1], s=300, marker='*', c=self.colors[classification])

        return classification

    def visualize(self):
        for i in self.data:
            for x in self.data[i]:
                self.ax.scatter(x[0], x[1], s=50, c=self.colors[i])

        def hyperplane(x, w, b, v):
            return (-w[0] * x - b + v) / w[1]

        data_range = (self.min_feature_value * 0.9, self.max_feature_value * 1.1)

        hyp_x_min = data_range[0]
        hyp_x_man = data_range[1]

        psv1 = hyperplane(hyp_x_min, self.w, self.b, 1)
        psv2 = hyperplane(hyp_x_man, self.w, self.b, 1)
        self.ax.plot([hyp_x_min, hyp_x_man], [psv1, psv2], c=self.colors[1])

        nsv1 = hyperplane(hyp_x_min, self.w, self.b, -1)
        nsv2 = hyperplane(hyp_x_man, self.w, self.b, -1)
        self.ax.plot([hyp_x_min, hyp_x_man], [nsv1, nsv2], c=self.colors[-1])

        db1 = hyperplane(hyp_x_min, self.w, self.b, 0)
        db2 = hyperplane(hyp_x_man, self.w, self.b, 0)
        self.ax.plot([hyp_x_min, hyp_x_man], [db1, db2], 'y--')

        pyplot.show()


if __name__ == '__main__':
    data_set = {-1: np.array([[1, 7],
                              [2, 8],
                              [3, 8]]),
                1: np.array([[5, 1],
                             [6, -1],
                             [7, 3]])}
    print(data_set)
    svm = SVM()
    svm.train(data_set)
    for predict_feature in [[0, 10], [1, 3], [4, 3], [5.5, 7.5], [8, 3]]:
        print(svm.predict(predict_feature))

    svm.visualize()

Python实现Support Vector Machine算法

上面使用的是最简单的线性可分离数据,在实际应用中很少遇到这种情况,为了处理更复杂的数据,SVM使用kernel函数(linear_kernel、polynomial_kernel、gaussion_kernel…)。

来源:http://blog.topspeedsnail.com/archives/10326#more-10326