visdom——数据可视化
程序员文章站
2022-05-21 12:22:30
目录1. 安装visdom1. 安装visdomwin+R打开运行,键入:pip install visdom打开使用,键入:python -m visdom.server然后我电脑直接报错就打不开visdom,然后我尝试键入:visdom成功打开把生成的网页 http://localhost:8097复制到浏览器上打开,会出现一个蓝色的屏。运行代码:import torchimport torch.nn as nnimport torch.nn.functional a...
安装visdom
win+R打开运行,键入:
pip install visdom
打开使用,键入:
python -m visdom.server
然后我电脑直接报错就打不开visdom,然后我尝试键入:
visdom
成功打开
把生成的网页 http://localhost:8097
复制到浏览器上打开,会出现一个蓝色的屏。
from visdom import Visdom
#生成一个viz的环境
viz = Visdom()
#初始化两个小的窗格,来分别绘制train,test的情况
# 绘制初始点,原点
viz.line([0.], [0.], win='train_loss',opts=dict(title='train loss')) #single-line
viz.line([loss.item()], [global_step], win='trian_loss', update='append')
viz.line([[0., 0.]], [0.], win='test',opts=dict(title='train loss', legend=['loss', 'acc.']))
viz.line([[test_loss, correct / len(test_loader.dataset)]], [global_step], win='test', update='append')
#这里前两个参数,一个表示指定变化指标数量,一个或者两个提前占位,并初始化为0,
#第二个参数表示进行到第几步全局minibatch批次号总共进行了几个minibatch
viz.images(data.view(-1,1,28,28), win='x')
viz.text(str(pred.detach().cpu().numpy()), win='pred', opts=dict(title='pred'))
运行代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from visdom import Visdom
batch_size = 200
learning_rate = 0.01
epochs = 10
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
nn.Linear(784, 200),
nn.LeakyReLU(inplace=True),
nn.Linear(200, 200),
nn.LeakyReLU(inplace=True),
nn.Linear(200, 10),
nn.LeakyReLU(inplace=True),
)
def forward(self, x):
x = self.model(x)
return x
device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
viz = Visdom()
viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
legend=['loss', 'acc.']))
global_step = 0
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data = data.view(-1, 28 * 28)
data, target = data.to(device), target.cuda()
logits = net(data)
loss = criteon(logits, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
viz.line([loss.item()], [global_step], win='train_loss', update='append')
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0
correct = 0
for data, target in test_loader:
data = data.view(-1, 28 * 28)
data, target = data.to(device), target.cuda()
logits = net(data)
test_loss += criteon(logits, target).item()
pred = logits.argmax(dim=1)
correct += pred.eq(target).float().sum().item()
viz.line([[test_loss, correct / len(test_loader.dataset)]],
[global_step], win='test', update='append')
viz.images(data.view(-1, 1, 28, 28), win='x')
viz.text(str(pred.detach().cpu().numpy()), win='pred',
opts=dict(title='pred'))
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
本文地址:https://blog.csdn.net/qq_37369201/article/details/107169307