欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P4725 【模板】多项式对数函数(多项式ln)

程序员文章站 2022-05-18 23:17:53
题意 "题目链接" Sol ~~这个不用背XD~~ 前置知识: $f(x) = ln(x), f'(x) = \frac{1}{x}$ $f(g(x)) = f'(g(x)) g'(x)$ 我们要求的是$G(x) = F(A(x)), F(x) = ln(x)$ 可以直接对两边求导$G'(A(x)) ......

题意

题目链接

sol

这个不用背xd

前置知识:

\(f(x) = ln(x), f'(x) = \frac{1}{x}\)

\(f(g(x)) = f'(g(x)) g'(x)\)

我们要求的是\(g(x) = f(a(x)), f(x) = ln(x)\)

可以直接对两边求导\(g'(a(x)) = f'(a(x))a'(x) = \frac{a(x)}{a'(x)}\)

发现这个可以算,只要求个逆就行了。

那么就直接求导之后积分回去,复杂度\(o(nlogn)\)

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define ll long long 
#define ull unsigned long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 4e5 + 10, inf = 1e9 + 10;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int a[maxn], b[maxn];
namespace poly {
    int rev[maxn], gpow[maxn], gipow[maxn], a[maxn], b[maxn], c[maxn], d[maxn], lim;
    const int g = 3, gi = 332748118, mod = 998244353;
    template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
    template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
    int fp(int a, int p, int p = mod) {
        int base = 1;
        for(; p; p >>= 1, a = 1ll * a * a % p) if(p & 1) base = 1ll * base *  a % p;
        return base;
    }
    int getlen(int x) {
        int lim = 1;
        while(lim < x) lim <<= 1;
        return lim;
    }
    int getorigin(int x) {//¼æëãô­¸ù 
        static int q[maxn]; int tot = 0, tp = x - 1;
        for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
        if(tp > 1) q[++tot] = tp;
        for(int i = 2, j; i <= x - 1; i++) {
            for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
            if(j == tot + 1) return i;
        }
    }
    void init(/*int p,*/ int lim) {
        //mod = p; g = getorigin(mod); gi = fp(g, mod - 2);
        for(int i = 1; i <= lim; i++) gpow[i] = fp(g, (mod - 1) / i), gipow[i] = fp(gi, (mod - 1) / i);
    }
    void ntt(int *a, int lim, int opt) {
        int len = 0; for(int n = 1; n < lim; n <<= 1) ++len; 
        for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
        for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
        for(int mid = 1; mid < lim; mid <<= 1) {
            int wn = (opt == 1 ? gpow[mid << 1] : gipow[mid << 1]);
            for(int i = 0; i < lim; i += (mid << 1)) {
                for(int j = 0, w = 1; j < mid; j++, w = mul(w, wn)) {
                    int x = a[i + j], y = mul(w, a[i + j + mid]);
                    a[i + j] = add(x, y), a[i + j + mid] = add(x, -y);
                }
            }
        }
        if(opt == -1) {
            int inv = fp(lim, mod - 2);
            for(int i = 0; i <= lim; i++) mul2(a[i], inv);
        }
    }
    void mul(int *a, int *b, int n, int m) {
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
        int lim = 1, len = 0; 
        while(lim <= n + m) len++, lim <<= 1;
        for(int i = 0; i <= n; i++) a[i] = a[i]; 
        for(int i = 0; i <= m; i++) b[i] = b[i];
        ntt(a, lim, 1); ntt(b, lim, 1);
        for(int i = 0; i <= lim; i++) b[i] = mul(b[i], a[i]);
        ntt(b, lim, -1);
        for(int i = 0; i <= n + m; i++) b[i] = b[i];
    }
    void inv(int *a, int *b, int len) {//b1 = 2b - a1 * b^2 
        if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
        inv(a, b, len >> 1);
        for(int i = 0; i < len; i++) a[i] = a[i], b[i] = b[i];
        ntt(a, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(a[i], mul(b[i], b[i]));
        ntt(a, len << 1, -1);
        for(int i = 0; i < len; i++) add2(b[i], add(b[i], -a[i]));
        for(int i = 0; i < (len << 1); i++) a[i] = b[i] = 0;
    }
    void dao(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]);
    }
    void ji(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); 
    }
    void ln(int *a, int *b, int len) {
        dao(a, c, len); 
        inv(a, d, len);
        ntt(c, len << 1, 1); ntt(d, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) d[i] = mul(c[i], d[i]);
        ntt(d, len << 1, -1); 
        ji(d, b, len << 1);
    }
    /*
    void polysqrt(int *a, int *b, int len) {//b1 = \frac{1}{2} (b + a / b)
        if(len == 1) {b[0] = };
    }
    */
};
using namespace poly; 
signed main() {
    int n = read();
    for(int i = 0; i < n; i++) a[i] = read();
    init(4 * n);
    ln(a, b, getlen(n));
    for(int i = 0; i < n; i++) cout << b[i] << " ";
    return 0;
}