洛谷P4723 【模板】线性递推(多项式取模 线性代数)
程序员文章站
2022-03-25 18:56:15
题意 "题目链接" Sol "Orz shadowice" 注意,下面的代码自带O(随时TLE)倍大常数。。 cpp include define Pair pair define MP(x, y) make_pair(x, y) define fi first define se second d ......
题意
sol
注意,下面的代码自带o(随时tle)倍大常数。。
#include<bits/stdc++.h> #define pair pair<int, int> #define mp(x, y) make_pair(x, y) #define fi first #define se second #define ll long long #define ull unsigned long long #define fin(x) {freopen(#x".in","r",stdin);} #define fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int maxn = 4e5 + 10, inf = 1e9 + 10, inv2 = 499122177; const double eps = 1e-9, pi = acos(-1); const int g = 3, mod = 998244353; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } namespace poly { int rev[maxn], gpow[maxn], a[maxn], b[maxn], c[maxn], lim; template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;} template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;} int fp(int a, int p, int p = mod) { int base = 1; for(; p; p >>= 1, a = 1ll * a * a % p) if(p & 1) base = 1ll * base * a % p; return base; } int getlen(int x) { int lim = 1; while(lim < x) lim <<= 1; return lim; } int getlen2(int x) { int lim = 1; while(lim <= x) lim <<= 1; return lim; } int getorigin(int x) {//¼æëãô¸ù static int q[maxn]; int tot = 0, tp = x - 1; for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;} if(tp > 1) q[++tot] = tp; for(int i = 2, j; i <= x - 1; i++) { for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break; if(j == tot + 1) return i; } } void init(int lim) { for(int i = 1; i <= lim; i++) gpow[i] = fp(g, (mod - 1) / i); } void ntt(int *a, int lim, int opt) { int len = 0; for(int n = 1; n < lim; n <<= 1) ++len; for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1)); for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int mid = 1; mid < lim; mid <<= 1) { int wn = gpow[mid << 1]; for(int i = 0; i < lim; i += (mid << 1)) { for(int j = 0, w = 1; j < mid; j++, w = mul(w, wn)) { int x = a[i + j], y = mul(w, a[i + j + mid]); a[i + j] = add(x, y), a[i + j + mid] = add(x, -y); } } } if(opt == -1) { reverse(a + 1, a + lim); int inv = fp(lim, mod - 2); for(int i = 0; i <= lim; i++) mul2(a[i], inv); } } void mul(int *a, int *b, int n, int m) { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); int lim = 1, len = 0; while(lim <= n + m) len++, lim <<= 1; for(int i = 0; i <= n; i++) a[i] = a[i]; for(int i = 0; i <= m; i++) b[i] = b[i]; ntt(a, lim, 1); ntt(b, lim, 1); for(int i = 0; i <= lim; i++) b[i] = mul(b[i], a[i]); ntt(b, lim, -1); for(int i = 0; i <= n + m; i++) b[i] = b[i]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); } void inv(int *a, int *b, int len) {//b1 = 2b - a1 * b^2 if(len == 1) {b[0] = fp(a[0], mod - 2); return ;} inv(a, b, len >> 1); for(int i = 0; i < len; i++) a[i] = a[i], b[i] = b[i]; ntt(a, len << 1, 1); ntt(b, len << 1, 1); for(int i = 0; i < (len << 1); i++) mul2(a[i], mul(b[i], b[i])); ntt(a, len << 1, -1); for(int i = 0; i < len; i++) add2(b[i], add(b[i], -a[i])); for(int i = 0; i < (len << 1); i++) a[i] = b[i] = 0; } void dao(int *a, int *b, int len) { for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0; } void ji(int *a, int *b, int len) { for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0; } void ln(int *a, int *b, int len) {//g(a) = \frac{a}{a'} qiudao zhihou jifen static int a[maxn], b[maxn]; dao(a, a, len); inv(a, b, len); ntt(a, len << 1, 1); ntt(b, len << 1, 1); for(int i = 0; i < (len << 1); i++) b[i] = mul(a[i], b[i]); ntt(b, len << 1, -1); ji(b, b, len << 1); memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); } void exp(int *a, int *b, int len) {//f(x) = f_0 (1 - lnf_0 + a) but code ..why.... if(len == 1) return (void) (b[0] = 1); exp(a, b, len >> 1); ln(b, c, len); c[0] = add(a[0] + 1, -c[0]); for(int i = 1; i < len; i++) c[i] = add(a[i], -c[i]); ntt(c, len << 1, 1); ntt(b, len << 1, 1); for(int i = 0; i < (len << 1); i++) mul2(b[i], c[i]); ntt(b, len << 1, -1); for(int i = len; i < (len << 1); i++) c[i] = b[i] = 0; } void sqrt(int *a, int *b, int len) { static int b[maxn]; ln(a, b, len); for(int i = 0; i < len; i++) b[i] = mul(b[i], inv2); exp(b, b, len); } void div(int *f, int *g, int *q, int *r, int n, int m) {//f(n) = g(m) * q(n - m + 1) + r(m) static int ginv[maxn], tf[maxn], tg[maxn]; memset(ginv, 0, sizeof(ginv)); memcpy(tf, f, (n + 1) << 2); memcpy(tg, g, (m + 1) << 2); reverse(f, f + n + 1); reverse(g, g + m + 1); inv(g, ginv, getlen2(n - m));//why not m mul(f, ginv, n - m, n - m); for(int i = 0; i <= n - m; i++) q[i] = ginv[i]; reverse(q, q + n - m + 1); reverse(f, f + n + 1); reverse(g, g + m + 1); mul(q, g, n - m, m); for(int i = 0; i < m; i++) r[i] = add(f[i], -g[i]); memcpy(f, tf, (n + 1) << 2); memcpy(g, tg, (m + 1) << 2); } void pownum(int *a, int *b, int p, int n, int len) { static int tx[maxn], ty[maxn]; memset(tx, 0, sizeof(tx)); memset(ty, 0, sizeof(ty)); ln(a, tx, len); for(int i = 0; i < n; i++) ty[i] = mul(p, tx[i]); exp(ty, b, len); } void mod(int *a, int *b, int n, int m) { static int q[maxn], r[maxn]; div(a, b, q, r, n, m); memcpy(a, r, m << 2); } void powpoly(int *base, ll p, int *mod, int m) { static int res[maxn], t[maxn]; res[0] = 1; while(p) { if(p & 1) { int lim = getlen(m << 1); memset(res + m, 0, lim - m << 2);; memcpy(t, base, m << 2); memset(t + m, 0, lim - m << 2); ntt(t, lim, 1); ntt(res, lim, 1); for(int i = 0; i < lim; i++) res[i] = mul(res[i], t[i]); ntt(res, lim, -1); mod(res, mod, lim, m); } p >>= 1; if(p) { int lim = getlen(m << 1); memset(base + m, 0, lim - m << 2); ntt(base, lim, 1); for(int i = 0; i < lim; i++) base[i] = mul(base[i], base[i]); ntt(base, lim, -1); mod(base, mod, (m << 1) , m); } } memcpy(base, res, m << 2); } int solve(int *f, int *a, ll n, int k) { static int aa[maxn], g[maxn]; for(int i = 1; i <= k; i++) g[k - i] = (-f[i] + mod) % mod; g[k] = aa[1] = 1; powpoly(aa, n, g, k); int ans = 0; for(int i = 0; i < k; i++) add2(ans, mul(aa[i], a[i]) - mod); return ans; } int lrec(ll n, int k) {//a_n = \sum_{i=1}^k f_i * a_{n-i} static int f[maxn], a[maxn]; init(8 * k); for(int i = 1; i <= k; i++) f[i] = read(); for(int i = 0; i < k; i++) a[i] = (read() + mod) % mod; return solve(f, a, n, k); } }; using namespace poly; signed main() { ll n = read();int k = read(); cout << lrec(n, k); return 0; }