欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

大数据hadoop3.1.3——Hadoop序列化以及案例操作

程序员文章站 2022-04-28 18:11:11
...

1、序列化概述

大数据hadoop3.1.3——Hadoop序列化以及案例操作
大数据hadoop3.1.3——Hadoop序列化以及案例操作

2、自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步。

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

  public FlowBean() {
     super();
  }  

(3)重写序列化方法

  @Override
  public void write(DataOutput out) throws IOException {
     out.writeLong(upFlow);
     out.writeLong(downFlow);
     out.writeLong(sumFlow);
  }

(4)重写反序列化方法

  @Override
  public void readFields(DataInput in) throws IOException {
     upFlow = in.readLong();
     downFlow = in.readLong();
     sumFlow = in.readLong();
  }   

(5)注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。

  @Override
  public int compareTo(FlowBean o)
  {
     //倒序排列,从大到小
     return this.sumFlow > o.getSumFlow() ? -1 : 1;
  }    

3 序列化案例实操

大数据hadoop3.1.3——Hadoop序列化以及案例操作
2.需求分析
大数据hadoop3.1.3——Hadoop序列化以及案例操作
3.编写MapReduce程序

(1)编写流量统计的Bean对象

package com.caron.mr.writable;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author Caron
 * @create 2020-04-16-20:11
 * @Description
 * @Version
 */
public class FlowBean implements Writable {
    private Long upFlow;    //上行流量
    private Long downFlow;  //下行流量
    private Long sumFlow;   //总流量
    public Long getUpFlow() {
        return upFlow;
    }
    public void setUpFlow(Long upFlow) {
        this.upFlow = upFlow;
    }
    public Long getDownFlow() {
        return downFlow;
    }
    public void setDownFlow(Long downFlow) {
        this.downFlow = downFlow;
    }
    public Long getSumFlow() {
        return sumFlow;
    }
    public void setSumFlow(Long sumFlow) {
        this.sumFlow = sumFlow;
    }
    public void  setSumFlow(){
        this.sumFlow = this.upFlow + this.downFlow;
    }
    /**
     * 重写toString方法
     * @return
     */
    @Override
    public String toString() {
        return this.upFlow + "/t" + this.downFlow + "/t" + this.sumFlow;
    }
    /**
     * 提供无参构造器,反序列化会反射调用
     */
    public FlowBean() { }
    /**
     *  序列化方法
     * @param dataOutput
     * @throws IOException
     */
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }
    /**
     *  反序列化方法
     * @param dataInput
     * @throws IOException
     */
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
    }
}

(2)编写Mapper类

package com.caron.mr.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
 * @author Caron
 * @create 2020-04-16-20:11
 * @Description
 * @Version
 */
public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
    private Text outK = new Text();
    private  FlowBean outV = new FlowBean();
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //处理一行数据
        String line = value.toString();
        //切割数据
        String[] splits = line.split("\t");
        //封装key
        outK.set(splits[1]);
        //封装value
        outV.setUpFlow(Long.parseLong(splits[splits.length-3]));
        outV.setDownFlow(Long.parseLong(splits[splits.length-2]));
        outV.getSumFlow();
        //写出
        context.write(outK,outV);
    }
}

(3)编写Reducer类

package com.caron.mr.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author Caron
 * @create 2020-04-16-20:11
 * @Description
 * @Version
 */
public class FlowReducer extends Reducer<Text, FlowBean,Text,FlowBean> {
    private FlowBean outV = new FlowBean();
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
        //总上行
        long totalUpFlow = 0;
        //总下行
        long totalDownFlow = 0;
        //总流量
        long totalSumFlow = 0;
        //处理一个手机号的
        for (FlowBean flowBean :
                values) {
            totalUpFlow += flowBean.getUpFlow();
            totalDownFlow += flowBean.getDownFlow();
            totalSumFlow += flowBean.getSumFlow();
        }
        //封装
        outV.setUpFlow(totalUpFlow);
        outV.setDownFlow(totalDownFlow);
        outV.setSumFlow(totalSumFlow);
        //写出
        context.write(key,outV);
    }
}

(4)编写Driver驱动类

package com.caron.mr.writable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

/**
 * @author Caron
 * @create 2020-04-16-20:11
 * @Description
 * @Version
 */
public class FlowDrriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        job.setJarByClass(FlowDrriver.class);
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        FileInputFormat.setInputPaths(job,new Path("F:/input/in.txt"));
        FileOutputFormat.setOutputPath(job,new Path("F:/output"));
        job.waitForCompletion(true);
    }
}
相关标签: Hadoop 面试学习