欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

读书笔记 Bioinformatics Algorithms Chapter5

程序员文章站 2022-05-15 11:27:00
Chapter5 HOW DO WE COMPARE DNA SEQUENCES Bioinformatics Algorithms-An_Active Learning Approach http://bioinformaticsalgorithms.com/ 一、 1983年,Russell D ......

chapter5  how do we compare dna sequences 

bioinformatics algorithms-an_active learning approach

读书笔记 Bioinformatics Algorithms Chapter5
 
一、
1983年,russell doolitte 将血小板源生长因子[platelet derived growth factor(pdgf),一种刺激细胞增殖的物质]和其它已知基因比对,发现它的序列和原癌基因(oncogene)的序列有很高的相似度。这让科学家猜测某些癌症是因为基因在不合适的时机作用所致(scientists hypothesized that some forms of cancer might be caused by a good gene doing the right thing at the wrong time.)。
二、提出问题 序列比对:动态规划法
 
1.全局比对:
读书笔记 Bioinformatics Algorithms Chapter5
 
读书笔记 Bioinformatics Algorithms Chapter5
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 code challenge: solve the global alignment problem.
  3      input: two protein strings written in the single-letter amino acid alphabet.
  4      output: the maximum alignment score of these strings followed by an alignment achieving this maximum score. use the
  5     blosum62 scoring matrix for matches and mismatches as well as the indel penalty σ = 5.
  6 ----------
  7 sample input:
  8 pleasantly
  9 meanly
 10 ----------
 11 sample output:
 12 8
 13 pleasantly
 14 -mea--n-ly
 15 ----------
 16 @ lo kowngho  2018.9
 17 '''
 18 import numpy
 19 from os.path import dirname
 20 
 21 def grade(symb1,symb2):
 22     indx1 = symbollist[symb1]
 23     indx2 = symbollist[symb2]
 24     return matrix[indx1][indx2]
 25     
 26 def init_graph_global(l1,l2):
 27     graph = numpy.zeros([l2,l1])
 28     for x in range(1,l2):
 29         graph[x][0] = graph[x-1][0]-5
 30     for y in range(1,l1):
 31         graph[0][y] = graph[0][y-1]-5
 32     return graph
 33         
 34 def init_path(l1,l2):
 35     path = numpy.zeros([l2,l1])
 36     for x in range(1,l2):
 37         path[x][0] = 1
 38     for y in range(1,l1):
 39         path[0][y] = 2
 40     return path
 41 
 42 def buildglobalalignmentgraph(text1,text2):
 43     
 44     l1 = len(text1)
 45     l2 = len(text2)
 46     graph = init_graph_global(l1, l2)
 47     path = init_path(l1, l2)
 48         
 49     for x in range(1,l2):
 50         for y in range(1,l1):
 51             graph[x][y] = max(graph[x-1][y]-5, graph[x][y-1]-5, graph[x-1][y-1]+grade(text1[y],text2[x]))
 52             if graph[x-1][y]-5==graph[x][y]:
 53                 path[x][y]=1
 54             elif graph[x][y-1]-5==graph[x][y]:
 55                 path[x][y]=2
 56             else:
 57                 path[x][y]=3
 58     return [graph,path]
 59     
 60     
 61 def outputglobalaligement(path,graph,text1,text2):
 62     outt1 = ''
 63     outt2 = ''
 64     l1 = len(text1)
 65     l2 = len(text2)
 66     x = l2-1
 67     y = l1-1
 68     while(x!=0 or y!=0):
 69         if path[x][y]==1:
 70             outt1 += '-'
 71             outt2 += text2[x]
 72             x -= 1            
 73         elif path[x][y]==2:
 74             outt1 += text1[y]
 75             outt2 += '-'
 76             y -= 1
 77         else:
 78             outt1 += text1[y]
 79             outt2 += text2[x]
 80             x -= 1
 81             y -= 1
 82     return [outt1[::-1],outt2[::-1]]    
 83     
 84 def importscorematrix():
 85     dataset = open(dirname(__file__)+'blosum62.txt').read().strip().split('\n')
 86     symbollist = dataset[0].split()
 87     for i in range(len(symbollist)):
 88         symbollist[i]=[symbollist[i],i]
 89     symbollist = dict(symbollist)
 90     print(symbollist)
 91     matrix = []
 92     for i in range(1,len(dataset)):
 93         matrix.append(dataset[i].split()[1:])
 94     for l in range(len(matrix)):
 95         for i in range(len(matrix[l])):
 96             matrix[l][i]=int(matrix[l][i])
 97     return [matrix,symbollist]
 98 
 99 if __name__ == '__main__':
100     
101     [matrix,symbollist] = importscorematrix()
102 
103     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
104     text1 = '0'+dataset[0]
105     text2 = '0'+dataset[1]
106     
107     [graph,path] = buildglobalalignmentgraph(text1, text2)
108     
109     [outt1,outt2] = outputglobalaligement(path,graph,text1,text2)
110     
111     print(int(graph[-1][-1]))
112     print(outt1)
113     print(outt2)
全局比对 python
 
2. 局部比对
可以把局部比对想象成下面的free taxi场景,在开始和结尾都不受罚分约束,只在中间的某一过程受罚分约束。
              读书笔记 Bioinformatics Algorithms Chapter5
在全局比对的基础上,状态转移方程在加上一个0,表示每一个点,既可以由→、↓、↘经过罚分得到,也可以直接由起点,不经罚分得到(free taxi)。
读书笔记 Bioinformatics Algorithms Chapter5读书笔记 Bioinformatics Algorithms Chapter5
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 code challenge: solve the local alignment problem.
  3      input: two protein strings written in the single-letter amino acid alphabet.
  4      output: the maximum score of a local alignment of the strings, followed by a local alignment of these strings achieving the maximum
  5      score. use the pam250 scoring matrix for matches and mismatches as well as the indel penalty σ = 5.
  6 ---------------
  7 sample input:
  8 meanly
  9 penalty
 10 ---------------
 11 sample output:
 12 15
 13 eanl-y
 14 enalty
 15 ---------------
 16 lo kwongho 2018.9
 17 '''
 18 import numpy
 19 from os.path import dirname
 20 
 21 def grade(symb1,symb2):
 22     indx1 = symbollist[symb1]
 23     indx2 = symbollist[symb2]
 24     return matrix[indx1][indx2]
 25 
 26 def init_graph_local(l1,l2):
 27     graph = numpy.zeros([l1,l2])
 28     return graph
 29         
 30 def init_path(l1,l2):
 31     path = numpy.ones([l1,l2])*-1
 32     for x in range(1,l1):
 33         path[x][0] = 1
 34     for y in range(1,l2):
 35         path[0][y] = 2
 36     return path
 37 
 38 def buildlocalalignmentgraph(text1,text2):
 39     l1 = len(text1)
 40     l2 = len(text2)
 41     graph = init_graph_local(l1, l2)
 42     path = init_path(l1, l2)
 43     
 44     for x in range(1,l1):
 45         for y in range(1,l2):
 46             graph[x][y] = max(graph[x-1][y]-5, graph[x][y-1]-5, graph[x-1][y-1]+grade(text1[x],text2[y]),0)
 47             if graph[x-1][y]-5 == graph[x][y]:
 48                 path[x][y] = 1
 49             elif graph[x][y-1]-5==graph[x][y]:
 50                 path[x][y] = 2
 51             elif graph[x][y] == 0:
 52                 path[x][y] = 0
 53             else:
 54                 path[x][y] = 3
 55     maxval = 0
 56     maxindx = [-1,-1]
 57     for x in range(1,l1):
 58         for y in range(1,l2):
 59             if graph[x][y]>maxval:
 60                 maxval=graph[x][y]
 61                 maxindx=[x,y]
 62                 
 63     return [graph,path,maxindx]
 64 
 65 def outputlocalaligement(path,graph,text1,text2,maxindx):
 66     outt1 = ''
 67     outt2 = ''
 68     l1 = len(text1)
 69     l2 = len(text2)
 70     x = maxindx[0]
 71     y = maxindx[1]
 72     while(x!=0 or y!=0):
 73         if path[x][y]==1:
 74             outt1 += text1[x]
 75             outt2 += '-'
 76             x -= 1            
 77         elif path[x][y]==2:
 78             outt1 += '-'
 79             outt2 += text2[y]
 80             y -= 1
 81         elif path[x][y]==3:
 82             outt1 += text1[x]
 83             outt2 += text2[y]
 84             x -= 1
 85             y -= 1
 86         else:
 87             x=0
 88             y=0
 89     return [outt1[::-1],outt2[::-1]]    
 90 
 91 
 92 def importscorematrix():
 93     dataset = open(dirname(__file__)+'pam250.txt').read().strip().split('\n')
 94     symbollist = dataset[0].split()
 95     for i in range(len(symbollist)):
 96         symbollist[i]=[symbollist[i],i]
 97     symbollist = dict(symbollist)
 98     matrix = []
 99     for i in range(1,len(dataset)):
100         matrix.append(dataset[i].split()[1:])
101     for l in range(len(matrix)):
102         for i in range(len(matrix[l])):
103             matrix[l][i]=int(matrix[l][i])
104     return [matrix,symbollist]
105     
106 if __name__ == '__main__':
107     [matrix,symbollist] = importscorematrix()
108     
109     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
110     text1 = '0'+dataset[0]
111     text2 = '0'+dataset[1]
112     
113     [graph,path,maxindx] = buildlocalalignmentgraph(text1,text2)
114     
115     [outt1,outt2]=outputlocalaligement(path,graph,text1,text2,maxindx)
116     print(int(graph[maxindx[0]][maxindx[1]]))
117     print(outt1)
118     print(outt2)
局部比对 python
3. overlarp alignment
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 code challenge: solve the overlap alignment problem.
  3    >>input: two strings v and w, each of length at most 1000.
  4    >>output: the score of an optimal overlap alignment of v and w, followed by an alignment of a suffix v' of v and a prefix w' of w.
  5     achieving this maximum score. use an alignment score in which matches count +1 and both the mismatch and indel penalties are 2.
  6 -------------------
  7 sample input:
  8 pawheae
  9 heagawghee
 10 -------------------
 11 sample output:
 12 1
 13 heae
 14 heag
 15 -------------------
 16 coder: lo kwongho
 17 '''
 18 
 19 import numpy
 20 from os.path import dirname
 21 
 22 def init_graph_overlap(l1,l2):
 23     graph = numpy.zeros([l1,l2])
 24     for y in range(1,l2):
 25         graph[0][y] = graph[0][y-1]-1
 26     return graph
 27         
 28 def init_path(l1,l2):
 29     path = numpy.ones([l1,l2])*-1
 30     for x in range(1,l1):
 31         path[x][0] = 1
 32     for y in range(1,l2):
 33         path[0][y] = 2
 34     return path
 35 
 36 def buildoverlapalignmentgraph(text1,text2):
 37     l1 = len(text1)
 38     l2 = len(text2)
 39     graph = init_graph_overlap(l1, l2)
 40     path = init_path(l1,l2)
 41     for x in range(1,l1):
 42         for y in range(1,l2):
 43             if text1[x]==text2[y]:
 44                 graph[x][y]=max(graph[x-1][y-1]+1,graph[x-1][y]-2,graph[x][y-1]-2)
 45             else:
 46                 graph[x][y]=max(graph[x-1][y-1]-2,graph[x-1][y]-2,graph[x][y-1]-2)
 47             if graph[x][y]==graph[x-1][y]-2:
 48                 path[x][y]=1
 49             elif graph[x][y]==graph[x][y-1]-2:
 50                 path[x][y]=2
 51             else:
 52                 path[x][y]=3
 53         
 54     maxval = 0
 55     maxindx = -1
 56     for i in range(l2):
 57         if graph[l1-1][i]>maxval:
 58             maxval=graph[l1-1][i]
 59             maxindx=i
 60                     
 61     return [graph,path,maxindx,maxval]    
 62     
 63 def outputoverlapaligement(path,graph,text1,text2,maxindx):
 64     outt1 = ''
 65     outt2 = ''
 66     l1 = len(text1)
 67     l2 = len(text2)
 68     x = l1-1
 69     y = maxindx
 70     while(y!=0):
 71         if path[x][y]==1:
 72             outt1 += text1[x]
 73             outt2 += '-'
 74             x -= 1            
 75         elif path[x][y]==2:
 76             outt1 += '-'
 77             outt2 += text2[y]
 78             y -= 1
 79         elif path[x][y]==3:
 80             outt1 += text1[x]
 81             outt2 += text2[y]
 82             x -= 1
 83             y -= 1
 84         else:
 85             x=0
 86             y=0
 87     return [outt1[::-1],outt2[::-1]]    
 88         
 89 
 90 if __name__ == '__main__':
 91     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
 92     text1 = '0'+dataset[0]
 93     text2 = '0'+dataset[1]
 94     l1 = len(text1)
 95     l2 = len(text2)
 96     [graph,path,maxindx,maxval] = buildoverlapalignmentgraph(text1,text2)
 97     #print(graph)
 98         
 99     [outtext1,outtext2]=outputoverlapaligement(path, graph, text1, text2, maxindx)
100 
101     print(int(maxval))
102     print(outtext1)
103     print(outtext2)
overlarp in python
4.fitting alignment 
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 fitting alignment problem: construct a highest-scoring fitting alignment between two strings.
  3    >>input: strings v and w as well as a matrix score.
  4    >>output: a highest-scoring fitting alignment of v and w as defined by the scoring matrix score.
  5 -------------------
  6 sample input:
  7 gtaggcttaaggtta
  8 tagata
  9 -------------------
 10 sample output:
 11 2
 12 taggctta
 13 taga--ta
 14 -------------------
 15 coder: lo kwongho
 16 '''
 17 
 18 import numpy
 19 from os.path import dirname
 20 
 21 def init_graph_fiting(l1,l2):
 22     graph = numpy.zeros([l1,l2])
 23     for y in range(1,l2):
 24         graph[0][y] = graph[0][y-1]-1
 25     return graph
 26         
 27 def init_path(l1,l2):
 28     path = numpy.ones([l1,l2])*-1
 29     for x in range(1,l1):
 30         path[x][0] = 1
 31     for y in range(1,l2):
 32         path[0][y] = 2
 33     return path
 34 
 35 def buildfittingalignmentgraph(text1,text2):
 36     l1 = len(text1)
 37     l2 = len(text2)
 38     graph = init_graph_fiting(l1, l2)
 39     path = init_path(l1,l2)
 40     for x in range(1,l1):
 41         for y in range(1,l2):
 42             if text1[x]==text2[y]:
 43                 graph[x][y]=max(graph[x-1][y-1]+1,graph[x-1][y]-1,graph[x][y-1]-1)
 44             else:
 45                 graph[x][y]=max(graph[x-1][y-1]-1,graph[x-1][y]-1,graph[x][y-1]-1)
 46             if graph[x][y]==graph[x-1][y]-1:
 47                 path[x][y]=1
 48             elif graph[x][y]==graph[x][y-1]-1:
 49                 path[x][y]=2
 50             else:
 51                 path[x][y]=3
 52     
 53     maxval = 0
 54     maxindx = -1
 55     for i in range(l1):
 56         if graph[i][l2-1]>maxval:
 57             maxval=graph[i][l2-1]
 58             maxindx=i
 59                         
 60     return [graph,path,maxindx,maxval]    
 61     
 62 def outputfittingaligement(path,graph,text1,text2,maxindx):
 63     outt1 = ''
 64     outt2 = ''
 65     l1 = len(text1)
 66     l2 = len(text2)
 67     x = maxindx
 68     y = l2-1
 69     while(y!=0):
 70         if path[x][y]==1:
 71             outt1 += text1[x]
 72             outt2 += '-'
 73             x -= 1            
 74         elif path[x][y]==2:
 75             outt1 += '-'
 76             outt2 += text2[y]
 77             y -= 1
 78         elif path[x][y]==3:
 79             outt1 += text1[x]
 80             outt2 += text2[y]
 81             x -= 1
 82             y -= 1
 83         else:
 84             x=0
 85             y=0
 86     return [outt1[::-1],outt2[::-1]]    
 87         
 88 
 89 if __name__ == '__main__':
 90     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
 91     text1 = '0'+dataset[0]
 92     text2 = '0'+dataset[1]
 93     l1 = len(text1)
 94     l2 = len(text2)
 95     [graph,path,maxindx,maxval] = buildfittingalignmentgraph(text1,text2)
 96     
 97     [outtext1,outtext2]=outputfittingaligement(path, graph, text1, text2, maxindx)
 98     #print(graph)
 99     print(int(maxval))
100     print(outtext1)
101     print(outtext2)
fitting alignment in python
这四种比对的关系如图:
 
全局比对                    局部比对
读书笔记 Bioinformatics Algorithms Chapter5
overlarp alignment                 fitting alignment
读书笔记 Bioinformatics Algorithms Chapter5
5、基因的插入和删除,通常都是连续的一段,故在比对出现的连续空位,应该把它们当作一个整体看待。在比对的空位罚分中,生物学家认为,在每一条链上新开一个空位,应罚重分,而空位的延续,罚分应较少:
解决问题的方法是:开三个矩阵,每个矩阵代表一种方向。在→、↓方向上行走,代表产生空位。故每当从↘转移到→、↓,或者→、↓间转移,代表在某链上产生新空位,重罚,而在→、↓内转移,代表空位延续,轻罚。
读书笔记 Bioinformatics Algorithms Chapter5
 
                     读书笔记 Bioinformatics Algorithms Chapter5
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 code challenge: solve the alignment with affine gap penalties problem.
  3    >>input: two amino acid strings v and w (each of length at most 100).
  4    >>output: the maximum alignment score between v and w, followed by an alignment of v and w achieving this maximum score. use the
  5      blosum62 scoring matrix, a gap opening penalty of 11, and a gap extension penalty of 1.
  6 ---------------------
  7 sample input:
  8 prteins
  9 prtwpsein
 10 ---------------------
 11 sample output:
 12 8
 13 prt---eins
 14 prtwpsein-
 15 ---------------------
 16 coder: lo kwongho
 17 '''
 18 import numpy
 19 from os.path import dirname
 20 neginfinity = -999
 21 #penalties
 22 gs = -10 #gap_start
 23 ge = -1  #gap_extend
 24 #
 25 def grade(symb1,symb2):
 26     indx1 = symbollist[symb1]
 27     indx2 = symbollist[symb2]
 28     return matrix[indx1][indx2]
 29 
 30 def initgraph(l1,l2):
 31     graph = [numpy.zeros([l1,l2]    ,dtype=int) for i in range(3)]
 32 
 33     graph[1][0][0] = neginfinity
 34     graph[2][0][0] = neginfinity
 35     for x in range(1,l1):
 36         graph[0][x][0]=neginfinity
 37         if x==1:
 38             graph[1][x][0]=ge+gs
 39         else:
 40             graph[1][x][0]=graph[1][x-1][0]+ge
 41         graph[2][x][0]=neginfinity
 42     for y in range(1,l2):
 43         graph[0][0][y]=neginfinity
 44         if y ==1:
 45             graph[2][0][y]=ge+gs
 46         else:
 47             graph[2][0][y]=graph[2][0][y-1]+ge
 48         graph[1][0][y]=neginfinity
 49     return graph
 50     
 51 def init_path(l1,l2):
 52     path = [numpy.ones([l1,l2])*-1 for i in range(3)]
 53     '''for x in range(1,l1):
 54         path[x][0] = 1
 55     for y in range(1,l2):
 56         path[0][y] = 2'''
 57     return path
 58     
 59 def buildalignmentgraph(text1,text2,l1,l2):
 60 
 61     graph = initgraph(l1,l2)
 62     #path = #init_path(l1,l2)
 63     for x in range(1,l1):
 64         for y in range(1,l2):                
 65             # x ######
 66             graph[1][x][y]=max(gs+ge+graph[0][x-1][y],gs+ge+graph[2][x-1][y],ge+graph[1][x-1][y])
 67 
 68                 
 69             # y ###### 
 70             graph[2][x][y]=max(gs+ge+graph[0][x][y-1],gs+ge+graph[1][x][y-1],ge+graph[2][x][y-1])
 71 
 72             # m ######
 73             graph[0][x][y]=grade(text1[x], text2[y])+max(graph[0][x-1][y-1],graph[1][x-1][y-1],graph[2][x-1][y-1])
 74 
 75     maxval = 0
 76     maxindx = -1
 77     for i in range(3):
 78         if graph[i][l1-1][l2-1]>maxval:
 79             maxval=graph[i][l1-1][l2-1]
 80             maxindx=i
 81     return [graph,maxindx,maxval]
 82 
 83 def trackback(graph,maxindx,text1,text2):
 84     x = len(text1)-1
 85     y = len(text2)-1
 86     otext1 = ''
 87     otext2 = ''
 88     indx = maxindx
 89     while(1):
 90         if indx==0:
 91             otext1 += text1[x]
 92             otext2 += text2[y]
 93             if x ==1:
 94                 break
 95             if graph[0][x][y]==graph[1][x-1][y-1]+grade(text1[x], text2[y]):
 96                 indx = 1
 97             elif graph[0][x][y]==graph[2][x-1][y-1]+grade(text1[x], text2[y]):
 98                 indx = 2
 99             else:
100                 indx = 0
101             x -= 1
102             y -= 1
103         elif indx==1:
104             otext1 += text1[x]
105             otext2 += '-'
106             if x == 1:
107                 break
108             if graph[1][x][y]==graph[0][x-1][y]+ge+gs:
109                 indx = 0
110             elif graph[1][x][y]==graph[2][x-1][y]+ge+gs:
111                 indx = 2
112             else:
113                 indx = 1
114             x -= 1
115         else:
116             otext1 += '-'
117             otext2 += text2[y]
118             if y == 1:
119                 break
120             if graph[2][x][y]==graph[0][x][y-1]+ge+gs:
121                 indx = 0
122             elif graph[2][x][y]==graph[1][x][y-1]+ge+gs:
123                 indx = 1
124             else:
125                 indx = 2
126             y -= 1
127                 
128     return [otext1[::-1],otext2[::-1]]
129         
130 def importscorematrix():
131     dataset = open(dirname(__file__)+'blosum62.txt').read().strip().split('\n')
132     symbollist = dataset[0].split()
133     for i in range(len(symbollist)):
134         symbollist[i]=[symbollist[i],i]
135     symbollist = dict(symbollist)
136     matrix = []
137     for i in range(1,len(dataset)):
138         matrix.append(dataset[i].split()[1:])
139     for l in range(len(matrix)):
140         for i in range(len(matrix[l])):
141             matrix[l][i]=int(matrix[l][i])
142     return [matrix,symbollist]
143 
144 
145 if __name__ == '__main__':
146     [matrix,symbollist] = importscorematrix() # 打分矩阵
147     
148     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
149     text1 = '0'+dataset[0]
150     text2 = '0'+dataset[1]
151     l1 = len(text1)
152     l2 = len(text2)
153     [graph,maxindx,maxval] = buildalignmentgraph(text1, text2, l1, l2)
154     #print(graph)
155     
156     [output_text1,output_text2] = trackback(graph,maxindx,text1,text2)
157     print(maxval)
158     print(output_text1)
159     print(output_text2)
160     
alignment with affine gap penalties

 

6 * 一种线性空间的比对方法 space-efficient sequence alignment(分治+动态规划)
https://www.cs.rit.edu/~rlaz/algorithms20082/slides/spaceefficientalignment.pdf
读书笔记 Bioinformatics Algorithms Chapter5
  1 '''
  2 code challenge: implement linearspacealignment to solve the global alignment problem for a large dataset.
  3 >>>input: two long (10000 amino acid) protein strings written in the single-letter amino acid alphabet.
  4 >>>output: the maximum alignment score of these strings, followed by an alignment achieving this maximum score. use the
  5 
  6 blosum62 scoring matrix and indel penalty σ = 5.
  7 ------------
  8 sample input:
  9 pleasantly
 10 meanly
 11 ------------
 12 sample output:
 13 8
 14 pleasantly
 15 -mea--n-ly
 16 ------------
 17 coder: lo kwongho in 2018.9
 18 '''
 19 from os.path import dirname
 20 import numpy
 21 #
 22 indel = -5
 23 neginf = -9999
 24 #
 25 #
 26 def grade(symb1,symb2):
 27     indx1 = symbollist[symb1]
 28     indx2 = symbollist[symb2]
 29     return matrix[indx1][indx2]
 30 
 31 def importscorematrix():
 32     dataset = open(dirname(__file__)+'blosum62.txt').read().strip().split('\n')
 33     symbollist = dataset[0].split()
 34     for i in range(len(symbollist)):
 35         symbollist[i]=[symbollist[i],i]
 36     symbollist = dict(symbollist)
 37     matrix = []
 38     for i in range(1,len(dataset)):
 39         matrix.append(dataset[i].split()[1:])
 40     for l in range(len(matrix)):
 41         for i in range(len(matrix[l])):
 42             matrix[l][i]=int(matrix[l][i])
 43     return [matrix,symbollist]
 44 #
 45 def half_alignment(v,w):
 46     nv = len(v)
 47     mw = len(w)
 48     s = numpy.zeros(shape=(nv+1,2),dtype=int)
 49     for i in range(nv+1):
 50         s[i,0] = indel*i
 51     if mw==0:
 52         return s[:,0] #
 53     for j in range(mw):
 54         s[0,1]=s[0,0]+indel
 55         for i in range(nv):
 56             s[i+1,1]=max(s[i,1]+indel,s[i+1,0]+indel,s[i,0]+grade(w[j],v[i]))
 57         s[:,0]=s[:,1]
 58     return s[:,1]
 59 
 60 def midedge(v,w):
 61     nv = len(v)
 62     mw = len(w)
 63     mid = int((mw-1)/2)
 64     wl = w[:mid]
 65     wr = w[mid+1:]
 66     pre = half_alignment(v,wl)
 67     suf = half_alignment(v[::-1],wr[::-1])[::-1]
 68     hs = [pre[i]+suf[i]+indel  for i in range(nv+1)]
 69     ds = [pre[i]+suf[i+1]+grade(w[mid],v[i])  for i in range(nv)]
 70     maxhs = max(hs)
 71     maxds = max(ds)
 72     if maxhs>maxds:
 73         return ( (hs.index(maxhs),mid) ,(hs.index(maxhs),mid+1) )
 74     else:
 75         return ( (ds.index(maxds),mid) ,(ds.index(maxds)+1,mid+1) )
 76 
 77 def build_alignment_track(v,w):
 78     vn = len(v)
 79     wm = len(w)
 80     if vn==0 and wm==0:
 81         return []
 82     elif vn==0:
 83         return ['-']*wm
 84     elif wm==0:
 85         return ['|']*vn
 86     ((x1,y1),(x2,y2)) = midedge(v,w)
 87     if x1==x2:
 88         edge = ['-']
 89     else:
 90         edge = ['\\']
 91     wleft = w[:y1]
 92     wright = w[y2:]
 93     vupper = v[:x1]
 94     vbotm = v[x2:]
 95 
 96     upper_left_track = build_alignment_track(vupper,wleft)
 97     bottom_right_track = build_alignment_track(vbotm,wright)
 98     return upper_left_track+edge+bottom_right_track
 99 
100 def tracktostring(v,w,track):
101     vi = 0
102     wj = 0
103     outv = ''
104     outw = ''
105     score = 0
106     for i in track:
107         if i == '|':
108             outv += v[vi]
109             outw += '-'
110             score += indel
111             vi += 1    
112         elif i == '-':
113             outv += '-'
114             outw += w[wj]
115             score += indel
116             wj += 1            
117         else:
118             outv += v[vi]
119             outw += w[wj]
120             score += grade(v[vi], w[wj])
121             vi += 1
122             wj += 1
123             
124     return [score,outv,outw]
125 
126 def linearspacealignment(v,w):
127     track = build_alignment_track(v,w)
128     [score,outv, outw] = tracktostring(v,w,track)
129     print(score)
130     print(outv)
131     print(outw)
132 
133 if __name__ == '__main__':
134     dataset = open(dirname(__file__)+'dataset.txt').read().strip().split()
135     [matrix,symbollist] = importscorematrix()
136     v = dataset[0]
137     w = dataset[1]
138     linearspacealignment(v,w)
linear-space alignment