Datawhale组队学习NLP_Bert序列标注学习笔记
程序员文章站
2022-05-14 17:09:44
...
本文为学习Datawhale 2021.8组队学习NLP入门之Transformer笔记
原学习文档地址:https://github.com/datawhalechina/learn-nlp-with-transformers
1 数据的读入
from datasets import load_dataset, load_metric
datasets = load_dataset("conll2003")
会由于网络原因造成error,可以使用colab下载,再保存到google云盘上后下载下来本地导入
from datasets import load_from_disk
datasets = load_from_disk("./datasets/conll2003")
datasets对象下有train,eval.test,各自下还有很多属性,比如标签的类别名等等
# 获取标签名
label_list = datasets["train"].features[f"{task}_tags"].feature.names
2 预处理数据
2.1 Word->Subword->tokens
- Tokenizer工具将word->subword->tokens
- Tokenizer使用的模型要和后面训练使用的保持一致
- 既可以对单个文本进行处理,也可以对分好词的文本进行处理
tokenizer("Hello, this is one sentence!")
tokenizer(["Hello", ",", "this", "is", "one", "sentence", "split", "into", "words", "."], is_split_into_words=True)
- 举个例子
# 获取要处理的词
example = datasets["train"][4]
# 将词->tokens
tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
# tokens->词
tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
注意第三步将tokens->词可以发现tokenizer会加入一些特殊符号如[CLS]和[SEP]
2.2 tag对齐
word->subword后,输入可能会变多,所以需要对tags进行对齐,两种方法:
- 1 word对应的第一个subword设置原来word对应的标签,其他subword的标签设为-100,-100的标签不会计算损失
- 2 word对应的所有subword均设为原来word对应的标签
tokenizer有一个word_ids方法可以帮助我们解决这个问题,他可以返回tokenizer对应的input单词的下标。
以下代码为进行tokenizer并标签对齐的代码,label_all_tokens 表示选择方法1或2
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples[f"{task}_tags"]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label[word_idx] if label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
接下来使用map函数对整个数据集进行上述操作
tokenized_datasets = datasets.map(tokenize_and_align_labels, batched=True)
3 使用Trainer微调预训练模型
from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=len(label_list))
为了能够得到一个Trainer训练工具,我们还需要3个要素,其中最重要的是训练的设定/参数 TrainingArguments。这个训练设定包含了能够定义训练过程的所有属性。
args = TrainingArguments(
f"test-{task}",
evaluation_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
)
设置data_collator ,用于将数据集喂给trainer
from transformers import DataCollatorForTokenClassification
data_collator = DataCollatorForTokenClassification(tokenizer)
设置评估方法
# metric = load_metric("seqeval") # 可能会出现网络问题,手动打开error中的地址进行下载后导入
metric = load_metric("./datasets/seqeval.py")
seqeval的使用例子
labels = [label_list[i] for i in example[f"{task}_tags"]]
metric.compute(predictions=[labels], references=[labels])
得到评估部分函数
import numpy as np
def compute_metrics(p):
predictions, labels = p # 这里应该是trainer传入的就是这样
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
训练
trainer.train()
评估
trainer.evaluate()