欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

程序员文章站 2022-05-14 14:25:57
python 3 利用 dlib 19.7 实现摄像头人脸检测特征点标定 0.引言 利用python开发,借助dlib库捕获摄像头中的人脸,进行实时特征点标定;...

python 3 利用 dlib 19.7 实现摄像头人脸检测特征点标定

0.引言

利用python开发,借助dlib库捕获摄像头中的人脸,进行实时特征点标定;

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图1 工程效果示例(gif)

python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

图2 工程效果示例(静态图片)

(实现比较简单,代码量也比较少,适合入门或者兴趣学习。)

1.开发环境

  python:  3.6.3

  dlib:    19.7

  opencv, numpy

import dlib     # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2     # 图像处理的库opencv 

2.源码介绍

  其实实现很简单,主要分为两个部分:摄像头调用+人脸特征点标定

2.1 摄像头调用

  介绍下opencv中摄像头的调用方法;

  利用 cap = cv2.videocapture(0) 创建一个对象;

  (具体可以参考)

# 2018-2-26
# by timestamp
# cnblogs: http://www.cnblogs.com/adaminxie

"""
cv2.videocapture(), 创建cv2摄像头对象/ open the default camera

  python: cv2.videocapture() → <videocapture object>

  python: cv2.videocapture(filename) → <videocapture object>  
  filename – name of the opened video file (eg. video.avi) or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)

  python: cv2.videocapture(device) → <videocapture object>
  device – id of the opened video capturing device (i.e. a camera index). if there is a single camera connected, just pass 0.

"""
cap = cv2.videocapture(0)


"""
cv2.videocapture.set(propid, value),设置视频参数;

  propid:
  cv_cap_prop_pos_msec current position of the video file in milliseconds.
  cv_cap_prop_pos_frames 0-based index of the frame to be decoded/captured next.
  cv_cap_prop_pos_avi_ratio relative position of the video file: 0 - start of the film, 1 - end of the film.
  cv_cap_prop_frame_width width of the frames in the video stream.
  cv_cap_prop_frame_height height of the frames in the video stream.
  cv_cap_prop_fps frame rate.
  cv_cap_prop_fourcc 4-character code of codec.
  cv_cap_prop_frame_count number of frames in the video file.
  cv_cap_prop_format format of the mat objects returned by retrieve() .
  cv_cap_prop_mode backend-specific value indicating the current capture mode.
  cv_cap_prop_brightness brightness of the image (only for cameras).
  cv_cap_prop_contrast contrast of the image (only for cameras).
  cv_cap_prop_saturation saturation of the image (only for cameras).
  cv_cap_prop_hue hue of the image (only for cameras).
  cv_cap_prop_gain gain of the image (only for cameras).
  cv_cap_prop_exposure exposure (only for cameras).
  cv_cap_prop_convert_rgb boolean flags indicating whether images should be converted to rgb.
  cv_cap_prop_white_balance_u the u value of the whitebalance setting (note: only supported by dc1394 v 2.x backend currently)
  cv_cap_prop_white_balance_v the v value of the whitebalance setting (note: only supported by dc1394 v 2.x backend currently)
  cv_cap_prop_rectification rectification flag for stereo cameras (note: only supported by dc1394 v 2.x backend currently)
  cv_cap_prop_iso_speed the iso speed of the camera (note: only supported by dc1394 v 2.x backend currently)
  cv_cap_prop_buffersize amount of frames stored in internal buffer memory (note: only supported by dc1394 v 2.x backend currently)
  
  value: 设置的参数值/ value of the property
"""
cap.set(3, 480)

"""
cv2.videocapture.isopened(), 检查摄像头初始化是否成功 / check if we succeeded
返回true或false
"""
cap.isopened()

""" 
cv2.videocapture.read([imgage]) -> retval,image, 读取视频 / grabs, decodes and returns the next video frame
返回两个值:
  一个是布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  图像对象,图像的三维矩阵
"""
flag, im_rd = cap.read()

2.2 人脸特征点标定

  调用预测器“shape_predictor_68_face_landmarks.dat”进行68点标定,这是dlib训练好的模型,可以直接调用进行人脸68个人脸特征点的标定;

  具体可以参考我的另一篇博客(python3利用dlib19.7实现人脸68个特征点标定); 

2.3 源码

  实现的方法比较简单:

  利用 cv2.videocapture() 创建摄像头对象,然后利用 flag, im_rd = cv2.videocapture.read() 读取摄像头视频,im_rd就是视频中的一帧帧图像;

  然后就类似于单张图像进行人脸检测,对这一帧帧的图像im_rd利用dlib进行特征点标定,然后绘制特征点;

  你可以按下s键来获取当前截图,或者按下q键来退出摄像头;

# 2018-2-26

# by timestamp
# cnblogs: http://www.cnblogs.com/adaminxie
# github: https://github.com/coneypo/dlib_face_detection_from_camera

import dlib           #人脸识别的库dlib
import numpy as np       #数据处理的库numpy
import cv2           #图像处理的库opencv

# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 创建cv2摄像头对象
cap = cv2.videocapture(0)

# cap.set(propid, value)
# 设置视频参数,propid设置的视频参数,value设置的参数值
cap.set(3, 480)

# 截图screenshoot的计数器
cnt = 0

# cap.isopened() 返回true/false 检查初始化是否成功
while(cap.isopened()):

  # cap.read()
  # 返回两个值:
  #  一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  #  图像对象,图像的三维矩阵
  flag, im_rd = cap.read()

  # 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitkey(1)

  # 取灰度
  img_gray = cv2.cvtcolor(im_rd, cv2.color_rgb2gray)

  # 人脸数rects
  rects = detector(img_gray, 0)

  #print(len(rects))

  # 待会要写的字体
  font = cv2.font_hershey_simplex

  # 标68个点
  if(len(rects)!=0):
    # 检测到人脸
    for i in range(len(rects)):
      landmarks = np.matrix([[p.x, p.y] for p in predictor(im_rd, rects[i]).parts()])

      for idx, point in enumerate(landmarks):
        # 68点的坐标
        pos = (point[0, 0], point[0, 1])

        # 利用cv2.circle给每个特征点画一个圈,共68个
        cv2.circle(im_rd, pos, 2, color=(0, 255, 0))

        # 利用cv2.puttext输出1-68
        cv2.puttext(im_rd, str(idx + 1), pos, font, 0.2, (0, 0, 255), 1, cv2.line_aa)
    cv2.puttext(im_rd, "faces: "+str(len(rects)), (20,50), font, 1, (0, 0, 255), 1, cv2.line_aa)
  else:
    # 没有检测到人脸
    cv2.puttext(im_rd, "no face", (20, 50), font, 1, (0, 0, 255), 1, cv2.line_aa)

  # 添加说明
  im_rd = cv2.puttext(im_rd, "s: screenshot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.line_aa)
  im_rd = cv2.puttext(im_rd, "q: quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.line_aa)

  # 按下s键保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)

  # 按下q键退出
  if(k==ord('q')):
    break

  # 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
cap.release()

# 删除建立的窗口
cv2.destroyallwindows()

如果对您有帮助,欢迎在github上star本项目

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。