欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

对Python中gensim库word2vec的使用

程序员文章站 2022-05-14 13:49:56
...
这篇文章主要介绍了关于对Python中gensim库word2vec的使用,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4)

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname)

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。


以上就是对Python中gensim库word2vec的使用的详细内容,更多请关注其它相关文章!