欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 建模步骤

程序员文章站 2022-05-14 12:30:13
#%% #载入数据 、查看相关信息 import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder print('第一步:加载、查看数据') file_path = r'D:\train\20... ......
#%%
#载入数据 、查看相关信息
import pandas as pd
import numpy as np
from  sklearn.preprocessing import labelencoder

print('第一步:加载、查看数据')

file_path = r'd:\train\201905data\liwang.csv'

band_data = pd.read_csv(file_path,encoding='utf-8')

band_data.info()

band_data.shape

#%%
#
print('第二步:清洗、处理数据,某些数据可以使用数据库处理数据代替')

#数据清洗:缺失值处理:丢去、
#查看缺失值
band_data.isnull().sum

band_data = band_data.dropna()
#band_data = band_data.drop(['state'],axis=1)
# 去除空格
band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map(lambda x: x.strip())
band_data['intl_plan'] = band_data['intl_plan'].map(lambda x: x.strip())
band_data['churned'] = band_data['churned'].map(lambda x: x.strip())
band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map({'no':0, 'yes':1})
band_data.intl_plan = band_data.intl_plan.map({'no':0, 'yes':1})

for column in band_data.columns:
    if band_data[column].dtype == type(object):
        le = labelencoder()
        band_data[column] = le.fit_transform(band_data[column])

#band_data = band_data.drop(['phone_number'],axis=1)
#band_data['churned'] = band_data['churned'].replace([' true.',' false.'],[1,0])
#band_data['intl_plan'] = band_data['intl_plan'].replace([' yes',' no'],[1,0])
#band_data['voice_mail_plan'] = band_data['voice_mail_plan'].replace([' yes',' no'],[1,0])


#%%
# 模型  [重复、调优]
print('第三步:选择、训练模型')

x = band_data.drop(['churned'],axis=1)
y = band_data['churned']

from sklearn import model_selection
train,test,t_train,t_test = model_selection.train_test_split(x,y,test_size=0.3,random_state=1)

from sklearn import tree
model = tree.decisiontreeclassifier(max_depth=2)
model.fit(train,t_train)

fea_res = pd.dataframe(x.columns,columns=['features'])
fea_res['importance'] = model.feature_importances_

t_name= band_data['churned'].value_counts()
t_name.index

import graphviz

import os
os.environ["path"] += os.pathsep + r'd:\software\developmentenvironment\graphviz-2.38\release\bin'

dot_data= tree.export_graphviz(model,out_file=none,feature_names=x.columns,max_depth=2,
                         class_names=t_name.index.astype(str),
                         filled=true, rounded=true,
                         special_characters=false)
graph = graphviz.source(dot_data)
#graph
graph.render("dtr")

#%%
print('第四步:查看、分析模型')

#结果预测
res = model.predict(test)

#混淆矩阵
from sklearn.metrics import confusion_matrix
confmat = confusion_matrix(t_test,res)
print(confmat)

#分类指标 https://blog.csdn.net/akadiao/article/details/78788864
from sklearn.metrics import classification_report
print(classification_report(t_test,res))

#%%
print('第五步:保存模型')

from sklearn.externals import joblib
joblib.dump(model,r'd:\train\201905data\mymodel.model')

#%%
print('第六步:加载新数据、使用模型')
file_path_do = r'd:\train\201905data\do_liwang.csv'

deal_data = pd.read_csv(file_path_do,encoding='utf-8')

#数据清洗:缺失值处理

deal_data = deal_data.dropna()
deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map(lambda x: x.strip())
deal_data['intl_plan'] = deal_data['intl_plan'].map(lambda x: x.strip())
deal_data['churned'] = deal_data['churned'].map(lambda x: x.strip())
deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map({'no':0, 'yes':1})
deal_data.intl_plan = deal_data.intl_plan.map({'no':0, 'yes':1})

for column in deal_data.columns:
    if deal_data[column].dtype == type(object):
        le = labelencoder()
        deal_data[column] = le.fit_transform(deal_data[column])
#数据清洗

#加载模型
model_file_path = r'd:\train\201905data\mymodel.model'
deal_model = joblib.load(model_file_path)
#预测
res = deal_model.predict(deal_data.drop(['churned'],axis=1))

#%%
print('第七步:执行模型,提供数据')
result_file_path = r'd:\train\201905data\result_liwang.csv'

deal_data.insert(1,'pre_result',res)
deal_data[['state','pre_result']].to_csv(result_file_path,sep=',',index=true,encoding='utf-8')