欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P4462 [CQOI2018]异或序列(莫队)

程序员文章站 2022-05-14 09:33:13
题意 "题目链接" Sol 一开始以为K每次都是给出的想了半天不会做。 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,。 cpp include define Pair pair define MP(x, y) make_pair(x, y) define fi first define se ......

题意

题目链接

sol

一开始以为k每次都是给出的想了半天不会做。

然而发现读错题了维护个前缀异或和然后直接莫队搞就行,。

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long 
#define ll long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 1e6 + 10, mod = 998244353, inf = 1e9 + 10;
const double eps = 1e-9;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, q, k, a[maxn], num[maxn], belong[maxn], block;
ll now, ans[maxn];
struct query {
    int l, r, id;
    bool operator < (const query &rhs) const {
        return belong[l] == belong[rhs.l] ? r < rhs.r : belong[l] < belong[rhs.l];
    }
}q[maxn];
void add(int x) {
    now += num[k ^ x];
    num[x]++;
}
void delet(int x) {
    num[x]--;
    now -= num[k ^ x];
}
void solve() {
    int l = 1, r = 0;
    for(int i = 1; i <= q; i++) {
        while(r < q[i].r) add(a[++r]);
        while(r > q[i].r) delet(a[r--]);
        while(l < q[i].l) delet(a[l++]);
        while(l > q[i].l) add(a[--l]);
        ans[q[i].id] = now;
    }
}
signed main() {
    n = read(); q = read(); k = read(); block = sqrt(n);
    for(int i = 1; i <= n; i++) a[i] = read() ^ a[i - 1], belong[i] = (i - 1) / block + 1;
    for(int i = 1; i <= q; i++) q[i].l = read() - 1, q[i].r = read(), q[i].id = i;
    sort(q + 1, q + q + 1);
    solve();
    for(int i = 1; i <= q; i++) cout << ans[i] << '\n';
    return 0;
}