欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

【python cookbook】找出序列中出现次数最多的元素

程序员文章站 2022-05-13 21:32:23
问题 《Python Cookbook》中有这么一个问题,给定一个序列,找出该序列出现次数最多的元素。例如: 统计出words中出现次数最多的元素? 初步探讨 1、collections模块的Counter类首先想到的是collections模块的Counter类,具体用法看这里!具体用法看这里!具 ......

 

问题

《Python Cookbook》中有这么一个问题,给定一个序列,找出该序列出现次数最多的元素。
例如:

words = [
   'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
   'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
   'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
   'my', 'eyes', "you're", 'under'
]

统计出words中出现次数最多的元素?

初步探讨

1、collections模块的Counter类
首先想到的是collections模块的Counter类,具体用法看这里!具体用法看这里!具体用法看这里!https://docs.python.org/3.6/l...,重要的事情强调三遍。

from collections import Counter

words = [
   'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
   'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
   'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
   'my', 'eyes', "you're", 'under'
]

counter_words = Counter(words)
print(counter_words)
most_counter = counter_words.most_common(1)
print(most_counter)

关于most_common([n]):

【python cookbook】找出序列中出现次数最多的元素

2、根据dict键值唯一性和sorted()函数

import operator

words = [
    'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
    'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
    'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
    'my', 'eyes', "you're", 'under'
]

dict_num = {}
for item in words:
    if item not in dict_num.keys():
        dict_num[item] = words.count(item)
        
# print(dict_num)

most_counter = sorted(dict_num.items(),key=lambda x: x[1],reverse=True)[0]  
print(most_counter)    

sorted函数:
传送门:https://docs.python.org/3.6/l...

【python cookbook】找出序列中出现次数最多的元素

iterable:可迭代类型;
key:用列表元素的某个属性或函数进行作为关键字,有默认值,迭代集合中的一项;
reverse:排序规则. reverse = True 降序 或者 reverse = False 升序,有默认值。
返回值:是一个经过排序的可迭代类型,与iterable一样。

这里,我们使用匿名函数key=lambda x: x[1]
等同于:

def key(x):
    return x[1]

这里,我们利用每个元素出现的次数进行降序排序,得到的结果的第一项就是出现元素最多的项。

更进一步

这里给出的序列很简单,元素的数目很少,但是有时候,我们的列表中可能存在上百万上千万个元素,那么在这种情况下,不同的解决方案是不是效率就会有很大差别了呢?
为了验证这个问题,我们来生成一个随机数列表,元素个数为一百万个。
这里使用numpy Package,使用前,我们需要安装该包,numpy包下载地址:https://pypi.python.org/pypi/...。这里我们环境是centos7,选择numpy-1.14.2.zip (md5, pgp)进行下载安装,解压后python setup.py install

 

def generate_data(num=1000000):
    return np.random.randint(num / 10, size=num)

np.random.randint(low[, high, size]) 返回随机的整数,位于半开区间 [low, high)
具体用法参考https://pypi.python.org/pypi

OK,数据生成了,让我们来测试一下两个方法所消耗的时间,统计时间,我们用time函数就可以。

 

#!/usr/bin/python
# coding=utf-8
#
# File: most_elements.py
# Author: ralap
# Data: 2018-4-5
# Description: find most elements in list
#

from collections import Counter
import operator
import numpy as np
import random
import time


def generate_data(num=1000000):
    return np.random.randint(num / 10, size=num)


def collect(test_list):
    counter_words = Counter(test_list)
    print(counter_words)
    most_counter = counter_words.most_common(1)
    print(most_counter)


def list_to_dict(test_list):
    dict_num = {}
    for item in test_list:
        if item not in dict_num.keys():
            dict_num[item] = test_list.count(item)

    most_counter = sorted(dict_num.items(), key=lambda x: x[1], reverse=True)[0]
    print(most_counter)

if __name__ == "__main__":
    list_value = list(generate_data())

    t1 = time.time()
    collect(list_value)
    t2 = time.time()
    print("collect took: %sms" % (t2 - t1))

    t1 = t2
    list_to_dict(list_value)
    t2 = time.time()
    print("list_to_dict took: %sms" % (t2 - t1))

以下结果是我在自己本地电脑运行结果,主要是对比两个方法相对消耗时间。

【python cookbook】找出序列中出现次数最多的元素

 

当数据比较大时,消耗时间差异竟然如此之大!下一步会进一步研究Counter的实现方式,看看究竟是什么魔法让他性能如此好。

参考资料

https://blog.csdn.net/xie_0723/article/details/51692806