欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python中numpy基础学习及进行数组和矢量计算

程序员文章站 2022-05-13 14:47:41
...
前言

在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率,类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算。

下面来看下简单的例子


import numpy as np
 
data=np.array([2,5,6,8,3]) #构造一个简单的数组
 
print(data)


结果:


[2 5 6 8 3]



data1=np.array([[2,5,6,8,3],np.arange(5)]) #构建一个二维数组
 
print(data1)


结果:


[[2 5 6 8 3]
[0 1 2 3 4]]


我们也可以通过shape和dtype方法查看数组的维度和数据格式


print(data.shape)
print(data.dtype)
print(data1.shape)
print(data1.dtype)


结果:


(5,)
int32

(2, 5)
int32


可以看出data是一维数组,每组元素为5个,数据类型为32位int 类型

data1 为二维数组,每个组有5个元素,数据类型为32位int类型

有一个较好的区分方法是看打印结果中,中括号的层数和位置,就可以看出数组的维度,一层中括号代表一个维度。

其他的数组属性方法还有:

array.ndim 数组的维数,一维数组结果为1,二维数组打印结果为2

array.size 数组的元素个数

array.itemsiz 数组每个元素的字节大小

接下来我们了解下数组中的数据类型:

NumPy中的基本数据类型


名称 描述
bool 用一个字节存储的布尔类型(True或False)
inti 由所在平台决定其大小的整数(一般为int32或int64)
int8 一个字节大小,-128 至 127
int16 整数,-32768 至 32767
int32 整数,-2 ** 31 至 2 ** 32 -1
int64 整数,-2 ** 63 至 2 ** 63 - 1
uint8 无符号整数,0 至 255
uint16 无符号整数,0 至 65535
uint32 无符号整数,0 至 2 ** 32 - 1
uint64 无符号整数,0 至 2 ** 64 - 1
float16 半精度浮点数:16位,正负号1位,指数5位,精度10位
float32 单精度浮点数:32位,正负号1位,指数8位,精度23位
float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

基础的数组运算

数组也可以进行我们常用的加减乘除运算


arr=np.array(np.arange(10))
arr1=np.array(np.arange(1,11))
print(arr*2)


结果:


[ 0 2 4 6 8 10 12 14 16 18]



print(arr+arr1)


结果:


[ 1 3 5 7 9 11 13 15 17 19]


注意,相加两个数组长度要一样

接下来我们看下数组索引


arr=np.arange(10)


用下标直接进行索引


print(arr[5])


结果为:


5


切片索引


print(arr[5:8])


结果为:


[5 6 7]


可以利用索引对数据进行更改操作


arr[5]=120
print(arr)


结果为:


[ 0 1 2 3 4 120 6 7 8 9]


可以看到下标为5的数已经变成120了。

此外,数组还可以进行布尔操作


arr=np.arange(5)
name=np.array(['a','b','b','c','a'])
print(name=='a')


结果为:


[ True False False False True]


即满足条件的数据全部以True的结果输出。

接下来我们可以利用name数组设置条件后的布尔值对arr数组进行相关操作


print(arr[name=='a'])


结果为:


[0 4]


即把arr中对应于name中a相对应位置的元素打印出来。

多条件操作


result=(name='a')|(name='c')
print(result)
print(name[result])


结果为:


[ True False False True True]
['a' 'c' 'a']


接下来,我们了解下ufunc方法

用于操作单个数组的函数有如下:

python中numpy基础学习及进行数组和矢量计算

用于操作两个或多个数组的方法

python中numpy基础学习及进行数组和矢量计算

相关的函数方法使用

np.meshgrid 用于生成多维矩阵


a,b=np.meshgrid(np.arange(1,5),np.arange(2,4))
print(a)
print(b)


结果为:


[[1 2 3 4]
[1 2 3 4]]
[[2 2 2 2]
[3 3 3 3]]


按照数据最少的数组形成数组

np.where 是三元表达式 x if condition else y的矢量化版本


arr1=np.arange(5)
arr2=np.arange(20,25)
condition=np.array([1,0,1,0,0])
result=np.where(condition,arr1,arr2)
print(arr1)
print(arr2)
print(result)


结果为:


[0 1 2 3 4]
[20 21 22 23 24]
[ 0 21 2 23 24]


可以看出,result的结果中,条件为1的显示数组arr1的内容,条件为0的显示arr2的内容

数学统计方法

在数组中我们也可以使用数学统计方法进行计数,例如sum mean std 等


arr=np.random.randint(1,20,10)
print(arr)
print(np.mean(arr))
print(np.sum(arr))
print(np.std(arr))


结果为:


[19 14 8 13 13 10 10 9 19 7]
12.2
122
4.01995024845


具体的方法内容如下图所示:

python中numpy基础学习及进行数组和矢量计算

布尔型数组的相关统计方法


arr=np.arange(-20,10)
result=(arr>5).sum()
print(arr)
print(result)


结果为:


-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
-2 -1 0 1 2 3 4 5 6 7 8 9]

4


可以对数据进行判断后进行个数求和

其他的数组方法还有

python中numpy基础学习及进行数组和矢量计算

数据的读取和存储

python中numpy基础学习及进行数组和矢量计算

线性函数的常用方法


arr=np.array([np.random.randint(1,10,5),np.random.randint(10,20,5)])
print(arr)
print(np.dot(arr,2))


结果为


[[ 4 6 5 1 6]
[14 16 11 10 18]]
[[ 8 12 10 2 12]
[28 32 22 20 36]]


dot方法可以进行矩阵相乘操作

其他方法如下图

python中numpy基础学习及进行数组和矢量计算

最后我们了解下numpy中的随机数生成方法

上面的很多例子中我们已经用到了随机数生成,


arr=np.random.random(10)
print(arr)


结果为


[ 0.90051063 0.72818635 0.00411373 0.13154345 0.45513344 0.9700776
0.42150977 0.27728599 0.50888291 0.62288808]


其他形式的随机数生成方法

python中numpy基础学习及进行数组和矢量计算

更多python中numpy基础学习及进行数组和矢量计算相关文章请关注PHP中文网!