欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

动态规划与信息熵,最大熵

程序员文章站 2022-05-12 19:00:45
...

最优化原理
   1951年美国数学家R.Bellman等人,根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。一些静态模型,只要人为地引进“时间”因素,分成时段,就可以转化成多阶段的动态模型,用动态规划方法去处理。与此同时,他提出了解决这类问题的“最优化原理”(Principle of optimality):
    “一个过程的最优决策具有这样的性质:即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略”。简言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。
    这个“最优化原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。
    最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都需要满足一定的条件: 
    (1) 问题中的状态必须满足最优化原理
    (2) 问题中的状态必须满足无后效性
    所谓的无后效性是指:“下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结”。

问题求解模式 
    动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

   初始状态→│决策1│→│决策2│→…→│决策n│→结束状态
     图1 动态规划决策过程示意图

    (1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
    (2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。
    (3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。
    (4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

算法实现
    动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。使用动态规划求解问题,最重要的就是确定动态规划三要素:问题的阶段,每个阶段的状态以及从前一个阶段转化到后一个阶段之间的递推关系。递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。下面分别以求解最大化投资回报问题和最长公共子序列问题为例阐述用动态规算法求解问题的一般思路。

 

 

 

 

定义

一个 X 值域为{x1, ..., xn}的随机变量的熵值 H 定义为:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

其中,E 代表了期望函数,而 I(X) 是 X 的信息量(又称为信息本体)。I(X) 本身是个随机变量。如果 p 代表了 X 的机率质量函数(probability mass function),则熵的公式可以表示为:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

在这里 b 是对数所使用的底,通常是 2, 自然常数 e,或是10。当b = 2,熵的单位是bit;当b = e,熵的单位是 nat;而当 b = 10,熵的单位是 dit。

pi = 0时,对于一些i值,对应的被加数0 logb 0的值将会是0,这与极限一致。

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

[编辑] 范例

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
抛硬币的熵H(X)(即期望自信息),以比特度量,与之相对的是硬币的公正度 Pr(X=1).

注意图的最大值取决于分布;在这里,要传达一个公正的抛硬币结果至多需要1比特,但要传达一个公正的抛骰子结果至多需要log2(6)比特。

如果有一个系统S内存在多个事件S = {E1,...,En},每个事件的机率分布 P = {p1, ..., pn},则每个事件本身的讯息(信息本体)为:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  (对数以2为底,单位是比特(bit))
动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  (对数以动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  为底,单位是纳特/nats)

如英语有26个字母,假如每个字母在文章中出现次数平均的话,每个字母的讯息量为:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

而汉字常用的有2500个,假如每个汉字在文章中出现次数平均的话,每个汉字的信息量为:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

熵是整个系统的平均消息量,即:

动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  

因为和热力学中描述热力学熵的玻尔兹曼公式形式一样,所以也称为“熵”。

如果两个系统具有同样大的消息量,如一篇用不同文字写的同一文章,由于是所有元素消息量的加和,那么中文文章应用的汉字就比英文文章使用的字母要少。所以汉字印刷的文章要比其他应用总体数量少的字母印刷的文章要短。即使一个汉字占用两个字母的空间,汉字印刷的文章也要比英文字母印刷的用纸少。

实际上每个字母和每个汉字在文章中出现的次数并不平均,因此实际数值并不如同上述,但上述计算是一个总体概念。使用书写单元越多的文字,每个单元所包含的讯息量越大。

 

 


动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
 

 

 


动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
 

  • 动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
  • 大小: 46.8 KB
  • 动态规划与信息熵,最大熵
            
    
    博客分类: 数学与计算  
  • 大小: 40.3 KB