欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Awesome Shawarma 【Gym - 101991A】【点分治】

程序员文章站 2022-05-12 15:13:45
...

题目链接


  题意:求给一棵N个点的树,加一条边,使得桥的数量在Awesome Shawarma 【Gym - 101991A】【点分治】之间。

  思路:原来有N-1条边,同时也代表N-1个桥,那么,我们需要删除Awesome Shawarma 【Gym - 101991A】【点分治】长度的桥,才能使得答案在Awesome Shawarma 【Gym - 101991A】【点分治】之间,所以,我们找出长度在Awesome Shawarma 【Gym - 101991A】【点分治】的链,统计这样的链的数量,所以,可以用点分治来完成这个任务。

  一开始的时候,我边界条件选择不严谨,导致出现如下错误。

1
6 4 4
1 2
2 3
3 4
4 5
5 6
ans:5
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e5 + 7;
int N, L, R, head[maxN], cnt, ql, qr;
struct Eddge
{
    int nex, to;
    Eddge(int a=-1, int b=0):nex(a), to(b) {}
} edge[maxN << 1];
inline void addEddge(int u, int v)
{
    edge[cnt] = Eddge(head[u], v);
    head[u] = cnt++;
}
inline void _add(int u, int v) { addEddge(u, v); addEddge(v, u); }
int root, maxx, all, siz[maxN], son[maxN];
bool vis[maxN];
void findroot(int u, int fa)
{
    siz[u] = 1; son[u] = 0;
    for(int i=head[u], v; ~i; i=edge[i].nex)
    {
        v = edge[i].to;
        if(vis[v] || v == fa) continue;
        findroot(v, u);
        siz[u] += siz[v];
        son[u] = max(son[u], siz[v]);
    }
    son[u] = max(son[u], all - siz[u]);
    if(maxx > son[u]) { maxx = son[u]; root = u; }
}
int deep[maxN], Stap[maxN], Stop, numsiz[maxN];
ll sum[maxN], dpsum[maxN], ans;
void dfs(int u, int fa)
{
    Stap[++Stop] = u;
    deep[u] = deep[fa] + 1; numsiz[u] = 1;
    for(int i=head[u], v; ~i; i=edge[i].nex)
    {
        v = edge[i].to;
        if(vis[v] || v == fa) continue;
        dfs(v, u);
        numsiz[u] += numsiz[v];
    }
}
void Divide(int u)
{
    vis[u] = true;
    int totsiz = all;
    for(int i=0; i<=all + 1; i++) sum[i] = 0;
    sum[0] = 1;
    for(int i=head[u], v; ~i; i=edge[i].nex)
    {
        v = edge[i].to;
        if(vis[v]) continue;
        Stop = 0;
        deep[u] = 0;
        dfs(v, u);
        for(int j=1; j<=Stop; j++) dpsum[deep[Stap[j]]]++;
        for(int j=1; j<=numsiz[v]; j++)
        {
            if(ql - j <= totsiz && qr - j >= -1) ans += (sum[max(0, ql - j)] - sum[min(totsiz, qr - j) + 1]) * dpsum[j];
        }
        for(int j=numsiz[v] - 1; j>=0; j--) dpsum[j] += dpsum[j + 1];
        for(int j=numsiz[v]; j>=0; j--) sum[j] += dpsum[j];
        for(int j=0; j<=numsiz[v] + 1; j++) dpsum[j] = 0;
    }
    for(int i=head[u], v; ~i; i=edge[i].nex)
    {
        v = edge[i].to;
        if(vis[v]) continue;
        all = siz[v] > siz[u] ? totsiz - siz[u] : siz[v];
        maxx = INF;
        findroot(v, 0);
        Divide(root);
    }
}
inline void init()
{
    cnt = 0; ql = N - 1 - R; qr = N - 1 - L; ans = 0;
    for(int i=1; i<=N; i++) { head[i] = -1; vis[i] = false; }
}
int main()
{
    freopen("awesome.in", "r", stdin);
    int T; scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d%d", &N, &L, &R);
        init();
        for(int i=1, u, v; i<N; i++)
        {
            scanf("%d%d", &u, &v);
            _add(u, v);
        }
        all = N; maxx = INF;
        findroot(1, 0);
        Divide(root);
        printf("%lld\n", ans);
    }
    return 0;
}

 

相关标签: 点分治 点分治