Python实现Canny及Hough算法代码实例解析
程序员文章站
2022-05-11 19:33:12
任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。效果代码实现canny边缘检测:# author: ji qiu (bupt)# fi...
任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。
效果
代码实现
canny边缘检测:
# author: ji qiu (bupt) # filename: my_canny.py import cv2 import numpy as np class canny: def __init__(self, guassian_kernal_size, img, ht_high_threshold, ht_low_threshold): ''' :param guassian_kernal_size: 高斯滤波器尺寸 :param img: 输入的图片,在算法过程中改变 :param ht_high_threshold: 滞后阈值法中的高阈值 :param ht_low_threshold: 滞后阈值法中的低阈值 ''' self.guassian_kernal_size = guassian_kernal_size self.img = img self.y, self.x = img.shape[0:2] self.angle = np.zeros([self.y, self.x]) self.img_origin = none self.x_kernal = np.array([[-1, 1]]) self.y_kernal = np.array([[-1], [1]]) self.ht_high_threshold = ht_high_threshold self.ht_low_threshold = ht_low_threshold def get_gradient_img(self): ''' 计算梯度图和梯度方向矩阵。 :return: 生成的梯度图 ''' print ('get_gradient_img') new_img_x = np.zeros([self.y, self.x], dtype=np.float) new_img_y = np.zeros([self.y, self.x], dtype=np.float) for i in range(0, self.x): for j in range(0, self.y): if j == 0: new_img_y[j][i] = 1 else: new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal) if i == 0: new_img_x[j][i] = 1 else: new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal) gradient_img, self.angle = cv2.carttopolar(new_img_x, new_img_y)#返回幅值和相位 self.angle = np.tan(self.angle) self.img = gradient_img.astype(np.uint8) return self.img def non_maximum_suppression (self): ''' 对生成的梯度图进行非极大化抑制,将tan值的大小与正负结合,确定离散中梯度的方向。 :return: 生成的非极大化抑制结果图 ''' print ('non_maximum_suppression') result = np.zeros([self.y, self.x]) for i in range(1, self.y - 1): for j in range(1, self.x - 1): if abs(self.img[i][j]) <= 4: result[i][j] = 0 continue elif abs(self.angle[i][j]) > 1: gradient2 = self.img[i - 1][j] gradient4 = self.img[i + 1][j] # g1 g2 # c # g4 g3 if self.angle[i][j] > 0: gradient1 = self.img[i - 1][j - 1] gradient3 = self.img[i + 1][j + 1] # g2 g1 # c # g3 g4 else: gradient1 = self.img[i - 1][j + 1] gradient3 = self.img[i + 1][j - 1] else: gradient2 = self.img[i][j - 1] gradient4 = self.img[i][j + 1] # g1 # g2 c g4 # g3 if self.angle[i][j] > 0: gradient1 = self.img[i - 1][j - 1] gradient3 = self.img[i + 1][j + 1] # g3 # g2 c g4 # g1 else: gradient3 = self.img[i - 1][j + 1] gradient1 = self.img[i + 1][j - 1] temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2 temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4 if self.img[i][j] >= temp1 and self.img[i][j] >= temp2: result[i][j] = self.img[i][j] else: result[i][j] = 0 self.img = result return self.img def hysteresis_thresholding(self): ''' 对生成的非极大化抑制结果图进行滞后阈值法,用强边延伸弱边,这里的延伸方向为梯度的垂直方向, 将比低阈值大比高阈值小的点置为高阈值大小,方向在离散点上的确定与非极大化抑制相似。 :return: 滞后阈值法结果图 ''' print ('hysteresis_thresholding') for i in range(1, self.y - 1): for j in range(1, self.x - 1): if self.img[i][j] >= self.ht_high_threshold: if abs(self.angle[i][j]) < 1: if self.img_origin[i - 1][j] > self.ht_low_threshold: self.img[i - 1][j] = self.ht_high_threshold if self.img_origin[i + 1][j] > self.ht_low_threshold: self.img[i + 1][j] = self.ht_high_threshold # g1 g2 # c # g4 g3 if self.angle[i][j] < 0: if self.img_origin[i - 1][j - 1] > self.ht_low_threshold: self.img[i - 1][j - 1] = self.ht_high_threshold if self.img_origin[i + 1][j + 1] > self.ht_low_threshold: self.img[i + 1][j + 1] = self.ht_high_threshold # g2 g1 # c # g3 g4 else: if self.img_origin[i - 1][j + 1] > self.ht_low_threshold: self.img[i - 1][j + 1] = self.ht_high_threshold if self.img_origin[i + 1][j - 1] > self.ht_low_threshold: self.img[i + 1][j - 1] = self.ht_high_threshold else: if self.img_origin[i][j - 1] > self.ht_low_threshold: self.img[i][j - 1] = self.ht_high_threshold if self.img_origin[i][j + 1] > self.ht_low_threshold: self.img[i][j + 1] = self.ht_high_threshold # g1 # g2 c g4 # g3 if self.angle[i][j] < 0: if self.img_origin[i - 1][j - 1] > self.ht_low_threshold: self.img[i - 1][j - 1] = self.ht_high_threshold if self.img_origin[i + 1][j + 1] > self.ht_low_threshold: self.img[i + 1][j + 1] = self.ht_high_threshold # g3 # g2 c g4 # g1 else: if self.img_origin[i - 1][j + 1] > self.ht_low_threshold: self.img[i + 1][j - 1] = self.ht_high_threshold if self.img_origin[i + 1][j - 1] > self.ht_low_threshold: self.img[i + 1][j - 1] = self.ht_high_threshold return self.img def canny_algorithm(self): ''' 按照顺序和步骤调用以上所有成员函数。 :return: canny 算法的结果 ''' self.img = cv2.gaussianblur(self.img, (self.guassian_kernal_size, self.guassian_kernal_size), 0) self.get_gradient_img() self.img_origin = self.img.copy() self.non_maximum_suppression() self.hysteresis_thresholding() return self.img
hough变换
# author: ji qiu (bupt) # filename: my_hough.py import numpy as np import math class hough_transform: def __init__(self, img, angle, step=5, threshold=135): ''' :param img: 输入的图像 :param angle: 输入的梯度方向矩阵 :param step: hough 变换步长大小 :param threshold: 筛选单元的阈值 ''' self.img = img self.angle = angle self.y, self.x = img.shape[0:2] self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2)) self.step = step self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)]) self.threshold = threshold self.circles = [] def hough_transform_algorithm(self): ''' 按照 x,y,radius 建立三维空间,根据图片中边上的点沿梯度方向对空间中的所有单 元进行投票。每个点投出来结果为一折线。 :return: 投票矩阵 ''' print ('hough_transform_algorithm') for i in range(1, self.y - 1): for j in range(1, self.x - 1): if self.img[i][j] > 0: y = i x = j r = 0 while y < self.y and x < self.x and y >= 0 and x >= 0: self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1 y = y + self.step * self.angle[i][j] x = x + self.step r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2) y = i - self.step * self.angle[i][j] x = j - self.step r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2) while y < self.y and x < self.x and y >= 0 and x >= 0: self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1 y = y - self.step * self.angle[i][j] x = x - self.step r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2) return self.vote_matrix def select_circle(self): ''' 按照阈值从投票矩阵中筛选出合适的圆,并作极大化抑制,这里的非极大化抑制我采 用的是邻近点结果取平均值的方法,而非单纯的取极大值。 :return: none ''' print ('select_circle') houxuanyuan = [] for i in range(0, math.ceil(self.y / self.step)): for j in range(0, math.ceil(self.x / self.step)): for r in range(0, math.ceil(self.radius / self.step)): if self.vote_matrix[i][j][r] >= self.threshold: y = i * self.step + self.step / 2 x = j * self.step + self.step / 2 r = r * self.step + self.step / 2 houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r))) if len(houxuanyuan) == 0: print("no circle in this threshold.") return x, y, r = houxuanyuan[0] possible = [] middle = [] for circle in houxuanyuan: if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20: possible.append([circle[0], circle[1], circle[2]]) else: result = np.array(possible).mean(axis=0) middle.append((result[0], result[1], result[2])) possible.clear() x, y, r = circle possible.append([x, y, r]) result = np.array(possible).mean(axis=0) middle.append((result[0], result[1], result[2])) def takefirst(elem): return elem[0] middle.sort(key=takefirst) x, y, r = middle[0] possible = [] for circle in middle: if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20: possible.append([circle[0], circle[1], circle[2]]) else: result = np.array(possible).mean(axis=0) print("circle core: (%f, %f) radius: %f" % (result[0], result[1], result[2])) self.circles.append((result[0], result[1], result[2])) possible.clear() x, y, r = circle possible.append([x, y, r]) result = np.array(possible).mean(axis=0) print("circle core: (%f, %f) radius: %f" % (result[0], result[1], result[2])) self.circles.append((result[0], result[1], result[2])) def calculate(self): ''' 按照算法顺序调用以上成员函数 :return: 圆形拟合结果图,圆的坐标及半径集合 ''' self.hough_transform_algorithm() self.select_circle() return self.circles
调用
# author: ji qiu (bupt) # filename: main.py import cv2 import math from my_hough import hough_transform from my_canny import canny # np.set_printoptions(threshold=np.inf) path = "picture_source/picture.jpg" save_path = "picture_result/" reduced_ratio = 2 guassian_kernal_size = 3 ht_high_threshold = 25 ht_low_threshold = 6 hough_transform_step = 6 hough_transform_threshold = 110 if __name__ == '__main__': img_gray = cv2.imread(path, cv2.imread_grayscale) img_rgb = cv2.imread(path) y, x = img_gray.shape[0:2] img_gray = cv2.resize(img_gray, (int(x / reduced_ratio), int(y / reduced_ratio))) img_rgb = cv2.resize(img_rgb, (int(x / reduced_ratio), int(y / reduced_ratio))) # canny takes about 40 seconds print ('canny ...') canny = canny(guassian_kernal_size, img_gray, ht_high_threshold, ht_low_threshold) canny.canny_algorithm() cv2.imwrite(save_path + "canny_result.jpg", canny.img) # hough takes about 30 seconds print ('hough ...') hough = hough_transform(canny.img, canny.angle, hough_transform_step, hough_transform_threshold) circles = hough.calculate() for circle in circles: cv2.circle(img_rgb, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2) cv2.imwrite(save_path + "hough_result.jpg", img_rgb) print ('finished!')
运行效果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: 刘备一生最怕的人是谁?马超竟然都打不过他
下一篇: 带病参加科举,文天祥是如何走向仕途的?
推荐阅读
-
使用 Node.js 实现图片的动态裁切及算法实例代码详解
-
Python实现Canny及Hough算法代码实例解析
-
MyBatis缓存实现原理及代码实例解析
-
Python中摘要算法MD5,SHA1简介及应用实例代码
-
作业笔记:基于二次插值的Wolfe-Powell非精确线搜索算法及Python代码实现
-
Python数据结构与算法之图的基本实现及迭代器实例详解
-
Python实现一个简单三层神经网络的搭建及测试 代码解析
-
python实现Canny与Hough算法
-
使用 Node.js 实现图片的动态裁切及算法实例代码详解
-
数据结构与算法1:二叉树(binary_tree)的前、中、后序(深度优先)和广度优先遍历及python代码实现