欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

【Python教程】绘制漂亮的柱状图

程序员文章站 2022-05-11 18:44:17
...
Matplotlib是基于Python语言的开源项目,其旨在为Python提供一个数据绘图包,本文简单介绍如何使用该程序包绘制漂亮的柱状图。

导入命令

1)设置工作环境%cd "F:\\Dropbox\\python"2)导入程序包import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
from matplotlib._png import read_png
import matplotlib.colors
from matplotlib.cbook import get_sample_data
import pandas as pd3)读取数据data=pd.read_csv("CAR.csv")4)定义并绘制图像
class RibbonBox(object):original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",asfileobj=False))cut_location = 70
b_and_h = original_image[:,:,2]
color = original_image[:,:,2] - original_image[:,:,0]
alpha = original_image[:,:,3]
nx = original_image.shape[1]def __init__(self, color):
rgb = matplotlib.colors.colorConverter.to_rgb(color)im = np.empty(self.original_image.shape,
self.original_image.dtype)im[:,:,:3] = self.b_and_h[:,:,np.newaxis]
im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb))
im[:,:,3] = self.alphaself.im = imdef get_stretched_image(self, stretch_factor):
stretch_factor = max(stretch_factor, 1)
ny, nx, nch = self.im.shape
ny2 = int(ny*stretch_factor)stretched_image = np.empty((ny2, nx, nch),
self.im.dtype)
cut = self.im[self.cut_location,:,:]
stretched_image[:,:,:] = cut
stretched_image[:self.cut_location,:,:] = \
self.im[:self.cut_location,:,:]
stretched_image[-(ny-self.cut_location):,:,:] = \
self.im[-(ny-self.cut_location):,:,:]self._cached_im = stretched_image
return stretched_image
class RibbonBoxImage(BboxImage):
zorder = 1def __init__(self, bbox, color,
cmap = None,
norm = None,
interpolation=None,
origin=None,
filternorm=1,
filterrad=4.0,
resample = False,
**kwargs
):BboxImage.__init__(self, bbox,
cmap = cmap,
norm = norm,
interpolation=interpolation,
origin=origin,
filternorm=filternorm,
filterrad=filterrad,
resample = resample,
**kwargs
)self._ribbonbox = RibbonBox(color)
self._cached_ny = Nonedef draw(self, renderer, *args, **kwargs):bbox = self.get_window_extent(renderer)
stretch_factor = bbox.height / bbox.widthny = int(stretch_factor*self._ribbonbox.nx)
if self._cached_ny != ny:
arr = self._ribbonbox.get_stretched_image(stretch_factor)
self.set_array(arr)
self._cached_ny = nyBboxImage.draw(self, renderer, *args, **kwargs)if 1:
from matplotlib.transforms import Bbox, TransformedBbox
from matplotlib.ticker import ScalarFormatterfig, ax = plt.subplots()years = np.arange(2001,2008)
box_colors = [(0.8, 0.2, 0.2),
(0.2, 0.8, 0.2),
(0.2, 0.2, 0.8),
(0.7, 0.5, 0.8),
(0.3, 0.8, 0.7),
(0.4, 0.6, 0.3),
(0.5, 0.5, 0.1),
]
heights = data['price']fmt = ScalarFormatter(useOffset=False)
ax.xaxis.set_major_formatter(fmt)for year, h, bc in zip(years, heights, box_colors):
bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h)
bbox = TransformedBbox(bbox0, ax.transData)
rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")ax.add_artist(rb_patch)
ax.annotate(h,
(year, h), va="bottom", ha="center")
ax.set_title('The Price of Car')patch_gradient = BboxImage(ax.bbox,
interpolation="bicubic",
zorder=0.1,
)
gradient = np.zeros((2, 2, 4), dtype=np.float)
gradient[:,:,:3] = [1, 1, 0.]
gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]]
patch_gradient.set_array(gradient)
ax.add_artist(patch_gradient)ax.set_xlim(years[0]-0.5, years[-1]+0.5)
ax.set_ylim(0, 15000)5)保存图像fig.savefig('The Price of Car.png')
plt.show()

输出图像如下

【Python教程】绘制漂亮的柱状图

以上就是【Python教程】绘制漂亮的柱状图的内容,更多相关内容请关注PHP中文网(www.php.cn)!