欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TF-IDF与余弦相似性的应用(二) 找出相似文章

程序员文章站 2022-05-11 15:47:46
上一次,我用TF-IDF算法自动提取关键词。 今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google...

上一次,我用TF-IDF算法自动提取关键词

今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google新闻"在主新闻下方,还提供多条相似的新闻。

为了找出相似的文章,需要用到"余弦相似性"(cosine similiarity)。下面,我举一个例子来说明,什么是"余弦相似性"。

为了简单起见,我们先从句子着手。

  句子A:我喜欢看电视,不喜欢看电影。
  句子B:我不喜欢看电视,也不喜欢看电影。

请问怎样才能计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。
  句子A:我/喜欢/看/电视,不/喜欢/看/电影。
  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。
  我,喜欢,看,电视,电影,不,也。

第三步,计算词频。
  句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量。
  句子A:[1, 2, 2, 1, 1, 1, 0]
  句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为 0 度,意味着方向相同、线段重合;如果夹角为 90 度,意味着形成直角,方向完全不相似;如果夹角为 180 度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

TF-IDF与余弦相似性的应用(二) 找出相似文章

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

TF-IDF与余弦相似性的应用(二) 找出相似文章

TF-IDF与余弦相似性的应用(二) 找出相似文章

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

TF-IDF与余弦相似性的应用(二) 找出相似文章

TF-IDF与余弦相似性的应用(二) 找出相似文章

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

TF-IDF与余弦相似性的应用(二) 找出相似文章

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

TF-IDF与余弦相似性的应用(二) 找出相似文章

余弦值越接近1,就表明夹角越接近 0 度,也就是两个向量越相似,这就叫”余弦相似性”。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为 20.3 度。

由此,我们就得到了”找出相似文章”的一种算法:

(1)使用 TF-IDF 算法,找出两篇文章的关键词;

(2)每篇文章各取出若干个关键词(比如 20 个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

(3)生成两篇文章各自的词频向量;

(4)计算两个向量的余弦相似度,值越大就表示越相似。

“余弦相似度”是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

下一次,我想谈谈如何在词频统计的基础上,自动生成一篇文章的摘要。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。