欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

Python中迭代器和生成器的示例详解

程序员文章站 2022-05-11 13:38:43
...

迭代器


Iterable

定义

class Iterable(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __iter__(self):
        while False:
            yield None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterable:
            if any("__iter__" in B.__dict__ for B in C.__mro__):
                return True
        return NotImplemented

由定义可知Iterable必然包含__iter__函数

Iterator

定义

class Iterator(Iterable):

    __slots__ = ()

    @abstractmethod
    def __next__(self):
        'Return the next item from the iterator. When exhausted, raise StopIteration'
        raise StopIteration

    def __iter__(self):
        return self

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterator:
            if (any("__next__" in B.__dict__ for B in C.__mro__) and
                any("__iter__" in B.__dict__ for B in C.__mro__)):
                return True
        return NotImplemented

从定义可知Iterator包含__next____iter__函数,当next超出范围时将抛出StopIteration事件

类型关系

#! /usr/bin/python
#-*-coding:utf-8-*-

from collections import Iterator,Iterable

# 迭代器
s = 'abc'
l = [1,2,3]
d=iter(l)

print(isinstance(s,Iterable)) # True
print(isinstance(l,Iterable)) # True

print(isinstance(s,Iterator)) # False
print(isinstance(l,Iterator)) # False

print(isinstance(d,Iterable)) # True
print(isinstance(d,Iterator)) # True

理论上你可以使用next()来执行__next__(),直到迭代器抛出StopIteration 实际上系统提供了for .. in ..的方式来解析迭代器

l = [1,2,3,4]
for i in l:
    print(i)
    
# 执行结果    
# 1
# 2
# 3
# 4

生成器 generator


生成器的本质是一个迭代器

#! /usr/bin/python
#-*-coding:utf-8-*-

from collections import Iterator,Iterable

s = (x*2 for x in range(5))
print(s)
print('Is Iterable:' + str(isinstance(s,Iterable)))
print('Is Iterator:' + str(isinstance(s,Iterator)))

for x in s:
    print(x)

# 执行结果    
# <generator object <genexpr> at 0x000001E61C11F048>
# Is Iterable:True
# Is Iterator:True
# 0
# 2
# 4
# 6
# 8

函数中如果存在yield 则该函数是一个生成器对象 在每一次执行next函数时该函数会在上一个yield处开始执行,并在下一个yield处返回(相当于return

def foo():
    print("First")
    yield 1
    print("Second")
    yield 2

f = foo()
print(f)

a = next(f)
print(a)
b = next(f)
print(b)

# <generator object foo at 0x0000020B697F50F8>
# First
# 1
# Second
# 2


实例

#! /usr/bin/python
#-*-coding:utf-8-*-

def add(s,x):
    return s+x

def gen():
    for i in range(4):
        yield i

base = gen()

# 由于gen函数中存在yield,所以
# for 循环本质是创建了两个generator object,而非执行函数
# base = (add(i,10) for i in base)
# base = (add(i,10) for i in base)
for n in [1,10]:
    base = (add(i,n) for i in base)


# 这里才开始展开生成器
# 第一个生成器展开
# base = (add(i,10) for i in base)
# base = (add(i,10) for i in range(4))
# base = (10,11,12,13)
#
# 第二个生成器展开
# base = (add(i,10) for i in (10,11,12,13))
# base = (20,21,22,23)
print(list(base)) # [20,21,22,23]

以上就是Python中迭代器和生成器的示例详解的详细内容,更多请关注其它相关文章!