欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

深入了解Python之heapq内置模块介绍

程序员文章站 2022-05-10 21:06:43
...
heapq 是 python 的内置模块,源码位于 Lib/heapq.py ,该模块提供了基于堆的优先排序算法。

堆的逻辑结构就是完全二叉树,并且二叉树中父节点的值小于等于该节点的所有子节点的值。这种实现可以使用 heap[k] <= heap[2k+1] 并且 heap[k] <= heap[2k+2] (其中 k 为索引,从 0 开始计数)的形式体现,对于堆来说,最小元素即为根元素 heap[0]。

可以通过 list 对 heap 进行初始化,或者通过 api 中的 heapify 将已知的 list 转化为 heap 对象

heapq 提供的函数方法

heapq.heappush(heap, item)

heapq.heappop(heap):返回 root 节点,即 heap 中最小的元素

heapq.heappushpop(heap, item):向 heap 中加入 item 元素,并返回 heap 中最小元素

heapq.heapify(x)

heapq.nlargest(n, iterable, key=None):返回可枚举对象中的 n 个最大值,并返回一个结果集 list,key 为对该结果集的操作

heapq.nsmallest(n, iterable, key=None):同上相反

demo

1. 通过 heapq api 对 list 进行排序

def heapsort(iterable):
    h = []

    for i in iterable:
        heapq.heappush(h, i)

    return [heapq.heappop(h) for i in range(len(h))]


s = [3, 5, 1, 2, 4, 6, 0, 1]
print(heapsort(s))

输出如下

 [0, 1, 1, 2, 3, 4, 5, 6]

2. 通过 key,找出对象列表中 price 最小的一项

portfolio = [
    {'name': 'IBM', 'shares': 100, 'price': 91.1},
    {'name': 'AAPL', 'shares': 50, 'price': 543.22},
    {'name': 'FB', 'shares': 200, 'price': 21.09},
    {'name': 'HPQ', 'shares': 35, 'price': 31.75},
    {'name': 'YHOO', 'shares': 45, 'price': 16.35},
    {'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(1, portfolio, key=lambda s: s['price'])
print(cheap)

输出如下

[{'shares': 45, 'price': 16.35, 'name': 'YHOO'}]

extend

上文讲到 heapq 是最小堆的实现,那么我们根据 heapq 的源码分析一下在 python 中如何通过 api 实现将 list 转化为最小堆(父节点的关键字比左右子节点都小)

可分为如下几步操作:

1. 从最后一个有子节点的元素开始,将这个父节点元素和其子节点看做一个单元

2. 在单元中,将两个子节点中较小的元素与父节点调换位置(不需要判断父节点和这个最小子节点的大小关系),通过这一步操作即可将这个单元变更为最小堆单元

3. 通过 while 循环可以将较小的元素向上推

def heapilize_list(x):
    n = len(x)
    # 获取存在子节点的节点 index 列表,并对每个节点单元进行最小堆处理
    for i in reversed(range(n // 2)):
        raiseup_node(x, i)

def put_down_node(heap, startpos, pos):
    current_item = heap[pos]
    # 判断单元中最小子节点与父节点的大小
    while pos > startpos:
        parent_pos = (pos - 1) >> 1
        parent_item = heap[parent_pos]

        if current_item < parent_item:
            heap[pos] = parent_item
            pos = parent_pos
            continue
        break

    heap[pos] = current_item

def raiseup_node(heap, pos):
    heap_len = len(heap)
    start_pos = pos
    current_item = heap[pos]
    left_child_pos = pos * 2 + 1

    while left_child_pos < heap_len:
        right_child_pos = left_child_pos + 1
        # 将这个单元中的最小子节点元素与父节点元素进行位置调换
        if right_child_pos < heap_len and not heap[left_child_pos] < heap[right_child_pos]:
            left_child_pos = right_child_pos
        heap[pos] = heap[left_child_pos]
        pos = left_child_pos
        left_child_pos = pos * 2 + 1
    heap[pos] = current_item
    put_down_node(heap, start_pos, pos)


p = [4, 6, 2, 10, 1]
heapilize_list(p)
print(p)

输出如下

[1, 6, 2, 10, 4]

以上就是深入了解Python之heapq内置模块介绍的详细内容,更多请关注其它相关文章!