欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Bubble Cup 12 - Finals [Online Mirror, unrated, Div. 1] E. Product Tuples

程序员文章站 2022-05-09 21:16:21
...

题意略,题解生成函数练习题,1+(q-ai)x卷积即可,线段树优化(类似分治思想)

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
//#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define mt make_tuple
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define bpc __builtin_popcount
#define base 1000000000000000000ll
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
#define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}

using namespace std;
//using namespace __gnu_pbds;

const ld pi = acos(-1);
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=200000+10,maxn=2000000+10,inf=0x3f3f3f3f;

ll x[N<<3],y[N<<3];
int rev[N<<3];
void getrev(int bit)
{
    for(int i=0;i<(1<<bit);i++)
        rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
    for(int i=0;i<n;i++)
        if(i<rev[i])
            swap(a[i],a[rev[i]]);
    for(int step=1;step<n;step<<=1)
    {
        ll wn=qp(3,(mod-1)/(step*2));
        if(dft==-1)wn=qp(wn,mod-2);
        for(int j=0;j<n;j+=step<<1)
        {
            ll wnk=1;
            for(int k=j;k<j+step;k++)
            {
                ll x=a[k];
                ll y=wnk*a[k+step]%mod;
                a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
                wnk=wnk*wn%mod;
            }
        }
    }
    if(dft==-1)
    {
        ll inv=qp(n,mod-2);
        for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
    }
}
vi v[N<<2];
int a[N],b[N];
void solve(int l,int r,int rt)
{
    if(l==r)
    {
        v[rt].clear();
        v[rt].pb(1);v[rt].pb(b[l]);
//        printf("%d\n",b[l]);
        return ;
    }
    int m=(l+r)>>1;
    solve(ls);solve(rs);
    int p=v[rt<<1].size(),q=v[rt<<1|1].size();
    int sz=0;
    while((1<<sz)<=p+q)sz++;
    getrev(sz);
    int len=(1<<sz);
//    printf("%d\n",len);
    for(int i=0;i<len;i++)
    {
        x[i]=(i<p?v[rt<<1][i]:0);
        y[i]=(i<q?v[rt<<1|1][i]:0);
    }
    ntt(x,len,1);ntt(y,len,1);
    for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod;
    ntt(x,len,-1);
    v[rt].clear();
    for(int i=0;i<len;i++)v[rt].pb(x[i]);
    while(v[rt].size()&&v[rt].back()==0)v[rt].pop_back();
}
int main()
{
//    fin;
    int n,k;scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]),a[i]%=mod;
    int q;scanf("%d",&q);
    while(q--)
    {
        int op,q,x,y,z;scanf("%d%d%d%d",&op,&q,&x,&y);
        if(op==1)
        {
            q%=mod,y%=mod;
            for(int i=1;i<=n;i++)
            {
                b[i]=(i==x?q-y:q-a[i]);
                if(b[i]<0)b[i]+=mod;
            }
        }
        else
        {
            scanf("%d",&z);
            q%=mod,z%=mod;
            for(int i=1;i<=n;i++)
            {
                if(x<=i&&i<=y)b[i]=((q-a[i]-z)%mod+mod)%mod;
                else b[i]=(q-a[i]+mod)%mod;
            }
        }
        solve(1,n,1);
        printf("%d\n",v[1][k]);
    }
    return 0;
}
/********************

********************/