欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MaxCompute分区表和非分区表使用对比 工作VBScriptBorlandWinForm 

程序员文章站 2022-05-09 12:04:44
...
原文链接:http://click.aliyun.com/m/25142/
摘要: 本文我们将通过对有同样数据量、表结构除分区列其他都一模一样的表,从查询计算、写入、删除数据几个简单操作进行对比,了解MaxCompute分区表和非分区表在使用上有什么差异。 在介绍之前,需要大家先了解MaxCompute分区的概念。

本文我们将通过对有同样数据量、表结构除分区列其他都一模一样的表,从查询计算、写入、删除数据几个简单操作进行对比,了解MaxCompute分区表和非分区表在使用上有什么差异。

在介绍之前,需要大家先了解MaxCompute分区的概念。

数据准备
分区表:取公共数据集中的表dwd_prouduct_house_basic_info_out(二手房产数据集);

非分区表:执行建表语句:

create table dwd_prouduct_house_basic_info_out_npt as select * from public_data.dwd_prouduct_house_basic_info_out;

创建表的同时将源表的所有数据都复制到新表dwd_prouduct_house_basic_info_out_npt中。
由于create table … as select …语句创建的表不会复制分区属性,只会把源表的分区列作为目标表的一般列处理,所以新表dwd_prouduct_house_basic_info_out_npt为非分区表。

可以分别执行select count(*) from public_data.dwd_prouduct_house_basic_info_out; 和 select count(*) from dwd_prouduct_house_basic_info_out_npt;查看这两个表的记录数会是一样。

本次操作表的记录数为1147676063条。
计算对比
我们执行一个简单的查询某个分区数据的job:

Select * from public_data.dwd_prouduct_house_basic_info_out where ds= '20170113';--分区表查询
Select * from dwd_prouduct_house_basic_info_out_npt where ds= '20170113';--非分区表查询
计算时长对比
计算资源充足的情况下进行操作。

分区表里查询使用时间1秒,:
image

直接在对应分区中取出该分区所有数据。

非分区里表查询:
加上job等待时间共1分15秒
image
真正执行时长53秒
image

需要在整个表1147676063条记录中取出满足条件的数据。
image

计算费用对比
我们可以直接通过大数据开发套件->“数据开发”工作区中的“成本估计”对两条查询语句进行费用预估,该预估功能采用的计费公式可参考“计量计费->I/O后付费”。

若采用计算预付费模式,可不用在意该计算费用。
下图是通过成本估计功能预估的费用,结果显示在非分区表中查询一样条件的数据会花费更多,当然最终花费还得看最后的账单。

image

table size对比
由于MaxCompute存储压缩比不一定完全一致,两个表数据在MaxCompute的size也会有一定的差异。

desc public_data.dwd_prouduct_house_basic_info_out;分区表执行结果如下图:

image

desc dwd_prouduct_house_basic_info_out_npt; 非分区表执行结果如下图:

image

写入对比
创建三个表,表结构除了分区列,其他都一致:

非分区表,

create  table   house_test_npt(house_id string  , house_total_price string , house_unit_price string , house_type string , house_floor string , house_direction string , house_deckoration string , house_area string , house_community_name string , house_region string  , house_city string, ds string)

以时间为分区的分区表

create  table   house_test_pt_1(house_id string  , house_total_price string , house_unit_price string , house_type string , house_floor string , house_direction string , house_deckoration string , house_area string , house_community_name string , house_region string  , house_city string ) partitioned by ( ds string)

以时间为一级分区,城市为二级分区的分区表
原文链接:http://click.aliyun.com/m/25142/