简要题意:给出两个大小均为\(N\)的点集\(A,B\),试在\(A\)中选择一个点,在\(B\)中选择一个点,使得它们在所有可能的选择方案中欧几里得距离最小,求出这个距离
下面给出的两种解法基本上都能够被卡成\(O(n^2)\)……
①
按照平面最近点对的做法去做,只是在贡献答案的时候加上所属点集不同的限制就可以了。
当然这个可以卡,只要把\(A\)、\(B\)集合之间分得很开,而\(A\)集合和\(B\)集合内部的点两两之间的距离很小,这样在分治下去的过程中没法贡献答案,最后在分治的第一层就有可能会退化成\(O(n^2)\)
如果你愿意可以旋转坐标系来部分解决上面的问题
代码没有写
②
K-D Tree
把\(A\)集合的点全部加进去构建K-D Tree,对于\(B\)集合内的每个点在K-D Tree上搜索,加个最优化剪枝。
这个怎么卡应该不需要说了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#define ld long double
#define int long long
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 1e5 + 7;
struct point{
int x , y , ind;
point(int _x = 0 , int _y = 0 , int _i = 0):x(_x) , y(_y) , ind(_i){}
}P[MAXN];
int N , rt;
int ch[MAXN][2] , X[MAXN][2] , Y[MAXN][2] , p[MAXN][2];
ld ans;
bool cmp1(point a , point b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
bool cmp2(point a , point b){
return a.y == b.y ? a.x < b.x : a.y < b.y;
}
inline ld calc(point a , point b){
return sqrt((long double)(a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline void merge(int x , int y){
X[x][0] = min(X[x][0] , X[y][0]);
X[x][1] = max(X[x][1] , X[y][1]);
Y[x][0] = min(Y[x][0] , Y[y][0]);
Y[x][1] = max(Y[x][1] , Y[y][1]);
}
int build(int l , int r , bool f){
if(l > r)
return 0;
int mid = (l + r) >> 1;
nth_element(P + l , P + mid , P + r + 1 , f ? cmp1 : cmp2);
int t = P[mid].ind;
X[t][0] = X[t][1] = P[mid].x;
Y[t][0] = Y[t][1] = P[mid].y;
if(ch[t][0] = build(l , mid - 1 , f ^ 1))
merge(t , ch[t][0]);
if(ch[t][1] = build(mid + 1 , r , f ^ 1))
merge(t , ch[t][1]);
return t;
}
inline ld qw(int x , point p){
int mx = max(max(X[x][0] - p.x , p.x - X[x][1]) , 0ll) , my = max(max(Y[x][0] - p.y , p.y - Y[x][1]) , 0ll);
return sqrt((long double)mx * mx + my * my);
}
void dfs(int x , point q , bool f){
if(x == 0 || qw(x , q) > ans)
return;
ans = min(ans , calc(point(p[x][0] , p[x][1]) , q));
if(f ? cmp1(point(p[x][0] , p[x][1]) , q) : cmp2(point(p[x][0] , p[x][1]) , q)){
dfs(ch[x][1] , q , f ^ 1);
dfs(ch[x][0] , q , f ^ 1);
}
else{
dfs(ch[x][0] , q , f ^ 1);
dfs(ch[x][1] , q , f ^ 1);
}
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
for(int T = read() ; T ; --T){
N = read();
for(int i = 1 ; i <= N ; ++i){
P[i].x = p[i][0] = read();
P[i].y = p[i][1] = read();
P[i].ind = i;
}
rt = build(1 , N , 0);
ans = 1e50;
for(int i = 1 ; i <= N ; ++i){
P[0].x = read();
P[0].y = read();
dfs(rt , P[0] , 0);
}
cout << fixed << setprecision(3) << ans << endl;
}
return 0;
}