欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)

程序员文章站 2022-05-08 19:05:55
...

传送门
题意简述:给你一张无向图,问你满足存在从a>b>ca->b->c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)的数量。


思路:
对每一个连通块建一棵圆方树,然后可以按照圆点和方点做不同的树形dpdp
圆点:找存在于两棵不同子树的点对数
方点:找存在于三颗不同子树的点对数。
代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
    static char buf[rlen],*ib,*ob;
    (ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
    return ib==ob?-1:*ib++;
}
inline int read(){
    int ans=0;
    char ch=gc();
    while(!isdigit(ch))ch=gc();
    while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
    return ans;
}
typedef long long ll;
const int N=2e5+5;
vector<int>e[N],g[N];
int n,m,low[N],all,dfn[N],sig,tot=0,stk[N],siz[N],top=0;
ll ans=0;
void tarjan(int p){
    ++all,low[p]=dfn[p]=++tot,stk[++top]=p;
    for(ri i=0,v;i<e[p].size();++i){
        if(!dfn[v=e[p][i]]){
            tarjan(v),low[p]=min(low[v],low[p]);
            if(low[v]>=dfn[p]){
                g[++sig].push_back(p),g[p].push_back(sig);
                int x;
                do g[sig].push_back(x=stk[top--]),g[x].push_back(sig);while(x^v);
            }
        }
        else low[p]=min(dfn[v],low[p]);
    }
}
void dfs(int p,int fa){
    siz[p]=p<=n;
    int sum=0;
    ll tmp=0;
    for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa){
        dfs(v,p);
        tmp+=(ll)sum*siz[v];
        sum+=siz[v],siz[p]+=siz[v];
    }
    tmp+=(ll)sum*(all-siz[p]);
    if(p<=n)ans+=tmp;
    else{for(ri i=0,v;i<g[p].size();++i)if((v=g[p][i])^fa)ans+=tmp-(ll)(all-siz[v])*siz[v];ans+=tmp-(ll)(all-siz[p])*siz[p];}
}
int main(){
    sig=n=read(),m=read();
    for(ri i=1,u,v;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
    for(ri i=1;i<=n;++i)if(!dfn[i])all=0,tarjan(i),dfs(i,0);
    cout<<ans*2;
    return 0;
}
相关标签: dp 图论