MySQL索引原理及慢查询优化
目录
1 MySQL索引原理
1.1 索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?
1.2 索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:
various-system-software-hardware-latencies
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
1.3 索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。
详解b+树
b+树
如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
b+树性质
1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
2 慢查询优化
关于MySQL索引原理是比较枯燥的东西,大家只需要有一个感性的认识,并不需要理解得非常透彻和深入。我们回头来看看一开始我们说的慢查询,了解完索引原理之后,大家是不是有什么想法呢?先总结一下索引的几大基本原则:
2.1 建索引的几大原则
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
2.2 慢查询优化的基本步骤
1)先运行看看是否真的很慢,注意设置SQL_NO_CACHE
2)where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
3)explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
4)order by limit 形式的sql语句让排序的表优先查
5)了解业务方使用场景
6)加索引时参照建索引的几大原则
7)观察结果,不符合预期继续从1开始分析
(1)数据库中设置SQL慢查询
一、第一步.开启mysql慢查询
方式一:
修改配置文件 在 my.ini 增加几行: 主要是慢查询的定义时间(超过2秒就是慢查询),以及慢查询log日志记录( slow_query_log)
方法二:通过MySQL数据库开启慢查询:
(2)分析慢查询日志
直接分析mysql慢查询日志 ,利用explain关键字可以模拟优化器执行SQL查询语句,来分析sql慢查询语句
例如:执行EXPLAIN SELECT * FROM res_user ORDER BYmodifiedtime LIMIT 0,1000
得到如下结果: 显示结果分析:
table | type | possible_keys | key |key_len | ref | rows | Extra EXPLAIN列的解释:
table 显示这一行的数据是关于哪张表的
type 这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和ALL
rows 显示需要扫描行数
key 使用的索引
2.3 常见的慢查询优化
(1)索引没起作用的情况
1. 使用LIKE关键字的查询语句
在使用LIKE关键字进行查询的查询语句中,如果匹配字符串的第一个字符为“%”,索引不会起作用。只有“%”不在第一个位置索引才会起作用。
2. 使用多列索引的查询语句
MySQL可以为多个字段创建索引。一个索引最多可以包括16个字段。对于多列索引,只有查询条件使用了这些字段中的第一个字段时,索引才会被使用。
(2)优化数据库结构
合理的数据库结构不仅可以使数据库占用更小的磁盘空间,而且能够使查询速度更快。数据库结构的设计,需要考虑数据冗余、查询和更新的速度、字段的数据类型是否合理等多方面的内容。
1. 将字段很多的表分解成多个表
对于字段比较多的表,如果有些字段的使用频率很低,可以将这些字段分离出来形成新表。因为当一个表的数据量很大时,会由于使用频率低的字段的存在而变慢。
2. 增加中间表
对于需要经常联合查询的表,可以建立中间表以提高查询效率。通过建立中间表,把需要经常联合查询的数据插入到中间表中,然后将原来的联合查询改为对中间表的查询,以此来提高查询效率。
(3)分解关联查询
将一个大的查询分解为多个小查询是很有必要的。
很多高性能的应用都会对关联查询进行分解,就是可以对每一个表进行一次单表查询,然后将查询结果在应用程序中进行关联,很多场景下这样会更高效,例如:
SELECT * FROM tag
JOIN tag_post ON tag_id = tag.id
JOIN post ON tag_post.post_id = post.id
WHERE tag.tag = 'mysql';
分解为:
SELECT * FROM tag WHERE tag = 'mysql';
SELECT * FROM tag_post WHERE tag_id = 1234;
SELECT * FROM post WHERE post.id in (123,456,567);
(4)优化LIMIT分页
在系统中需要分页的操作通常会使用limit加上偏移量的方法实现,同时加上合适的order by 子句。如果有对应的索引,通常效率会不错,否则MySQL需要做大量的文件排序操作。
一个非常令人头疼问题就是当偏移量非常大的时候,例如可能是limit 10000,20这样的查询,这是mysql需要查询10020条然后只返回最后20条,前面的10000条记录都将被舍弃,这样的代价很高。
优化此类查询的一个最简单的方法是尽可能的使用索引覆盖扫描,而不是查询所有的列。然后根据需要做一次关联操作再返回所需的列。对于偏移量很大的时候这样做的效率会得到很大提升。
对于下面的查询:
select id,title from collect limit 90000,10;
该语句存在的最大问题在于limit M,N中偏移量M太大(我们暂不考虑筛选字段上要不要添加索引的影响),导致每次查询都要先从整个表中找到满足条件 的前M条记录,之后舍弃这M条记录并从第M+1条记录开始再依次找到N条满足条件的记录。如果表非常大,且筛选字段没有合适的索引,且M特别大那么这样的代价是非常高的。 试想,如我们下一次的查询能从前一次查询结束后标记的位置开始查找,找到满足条件的100条记录,并记下下一次查询应该开始的位置,以便于下一次查询能直接从该位置 开始,这样就不必每次查询都先从整个表中先找到满足条件的前M条记录,舍弃,在从M+1开始再找到100条满足条件的记录了。
title字段加索引 (此效率如何未加验证)
select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;
原理:先查询出90000条数据对应的主键id的值,然后直接通过该id的值直接查询该id后面的数据。
如果这个表非常大,那么这个查询可以改写成如下的方式:
Select news.id, news.description from news inner join (select id from news order by title limit 50000,5) as myNew using(id);
这里的“关延迟联”将大大提升查询的效率,它让MySQL扫描尽可能少的页面,获取需要的记录后再根据关联列回原表查询需要的所有列。这个技术也可以用在优化关联查询中的limit。
方法四:建立复合索引 acct_id和create_time
select * from acct_trans_log WHERE acct_id = 3095 order by create_time desc limit 0,10
注意sql查询慢的原因都是:引起filesort
3 SQL语句优化
1、两个表选哪个为驱动表,表面是可以以数据量的大小作为依据,但是实际经验最好交给mysql查询优化器自己去判断。
例如: select * from a where id in (select id from b );
对于这条sql语句它的执行计划其实并不是先查询出b表的所有id,然后再与a表的id进行比较。
mysql会把in子查询转换成exists相关子查询,所以它实际等同于这条sql语句:select * from a where exists(select * from b where b.id=a.id );
而exists相关子查询的执行原理是: 循环取出a表的每一条记录与b表进行比较,比较的条件是a.id=b.id . 看a表的每条记录的id是否在b表存在,如果存在就行返回a表的这条记录。
exists查询有什么弊端?
由exists执行原理可知,a表(外表)使用不了索引,必须全表扫描,因为是拿a表的数据到b表查。而且必须得使用a表的数据到b表中查(外表到里表中),顺序是固定死的。
如何优化?
建索引。但是由上面分析可知,要建索引只能在b表的id字段建,不能在a表的id上,mysql利用不上。
这样优化够了吗?还差一些。
由于exists查询它的执行计划只能拿着a表的数据到b表查(外表到里表中),虽然可以在b表的id字段建索引来提高查询效率。
但是并不能反过来拿着b表的数据到a表查,exists子查询的查询顺序是固定死的。
为什么要反过来?
因为首先可以肯定的是反过来的结果也是一样的。这样就又引出了一个更细致的疑问:在双方两个表的id字段上都建有索引时,到底是a表查b表的效率高,还是b表查a表的效率高?
该如何进一步优化?
把查询修改成inner join连接查询:select * from a inner join b on a.id=b.id; (但是仅此还不够,接着往下看)
为什么不用left join 和 right join?
这时候表之间的连接的顺序就被固定住了,比如左连接就是必须先查左表全表扫描,然后一条一条的到另外表去查询,右连接同理。仍然不是最好的选择。
为什么使用inner join就可以?
inner join中的两张表,如: a inner join b,但实际执行的顺序是跟写法的顺序没有半毛钱关系的,最终执行也可能会是b连接a,顺序不是固定死的。如果on条件字段有索引的情况下,同样可以使用上索引。
那我们又怎么能知道a和b什么样的执行顺序效率更高?
你不知道,我也不知道。谁知道?mysql自己知道。让mysql自己去判断(查询优化器)。具体表的连接顺序和使用索引情况,mysql查询优化器会对每种情况做出成本评估,最终选择最优的那个做为执行计划。
在inner join的连接中,mysql会自己评估使用a表查b表的效率高还是b表查a表高,如果两个表都建有索引的情况下,mysql同样会评估使用a表条件字段上的索引效率高还是b表的。
利用explain字段查看执行时运用到的key(索引)
而我们要做的就是:把两个表的连接条件的两个字段都各自建立上索引,然后explain 一下,查看执行计划,看mysql到底利用了哪个索引,最后再把没有使用索引的表的字段索引给去掉就行了。
可以使用explain查询msyql的执行计划。
1.添加索引
场景:我们有个日志表,这个日志表有两个核心字段,包括result_code和create_time,result_code用来记录业务的操作结果,如果业务执行成功,则result_code=200,占大多数;如果业务执行失败,则result_code=400或其他,占少部分,create_time是记录创建的时间,这个表每天新增的数据量是几百万,create_time是有加索引的,但result_code字段没加索引,导致要查出某段时间业务执行失败的数据时,需要扫描的数据量非常大,从而导致慢查询SQL。
解决办法:给字段result_code加索引。
这里有个前提,那就是result_code=200占多数,result_code =400占小数,所以对字段result_code加索引后,查询result_code=400的性能会提高很多,但如果result_code=200和400的数量相关不大的话,其实也不会有太大的提升。
系统中相当一部分慢查询SQL都是可以添加索引的方式进行优化。
2.改变索引字段
比如有以下SQL:
select count(*) from log where create_time>DATE_SUB(NOW(), INTERVAL 1 DAY)
log中有核心字段result_code和create_time,其中建了联合索引index(result_code,create_time)
这条SQL不会中索引,通过优化添加查询条件的方式命中联合索引,SQL改成
select count(*) from log where result_code IN(200,400) and create_time>DATE_SUB(NOW(), INTERVAL 1 DAY)
3.停掉无用的SQL
有些业务告警配置了查询时间段比较长,比如15天,或者字段使用模糊查询条件like '%XXX%',导致扫描数量量较大,向相关人员确认没该需求后就关闭告警,停掉SQL。
4.添加查询条件
场景:很多页面都有一个查询功能,页面上有很多查询条件中以填写,初次进页面时,如果没有填写一些查询条件或者查询条件中的过滤效果不好,就很容易产生慢查询SQL。
比如页面的初次查询是:
select count(*) from log
如果表log中的数据量达到几千万或者上亿,那么这个查询花费的时间少则几秒,多则十几秒。
解决办法:设置默认的查询字段,比如默认查询一天内的数据
select count(*) from log where create_time>DATE_SUB(NOW(), INTERVAL 1 DAY)
5.程序优化
场景:很多SQL使用模糊查询 like '%XXX%',这种查询是不会中索引的,虽然MySQL5.6.24上InnoDB引擎也支持全文索引,但如果表的数据量比较大的话,全文索引会占用很大的空间。
解决办法:在某些特定场景下,可以在程序中把关键词识别出来,放入单独的字段,并加上索引。
这只是在特定场景才可以生效,而且要修改程序,比较费时。
6.改变引擎优化方向
场景:同时使用id和create_time索引,比如以下SQL
select count(*) from log where create_time>DATE_SUB(NOW(), INTERVAL 1 DAY) and id>0
我们有个定时器是扫描出最近几天执行失败的数据,拿出来进行重试,使用id和创建时间进行过滤,初次循环使用maxId=0,下次循环maxId=maxId+count,但第一次循环时由于是maxId=0,所以就是上面的SQL语句
MYSQL引擎会认为走ID主键索引是最优的,相当于扫描出全表的ID,再使用create_time索引进行过滤,导致查询效率极差,需要300多秒。
优化的办法是,首次查询时取消id>0的条件,第二次查询时才加上id>maxId,这样的首次查询时间就降到2秒多。
7.无法优化。
SQL中的查询字段有中索引,但需要扫描的数据量较大,或者由于使用like '%XX%'导致全表扫描等等,很多这类场景并没有多少可以优化的空间。
8.幽灵事件
遇到有个SQL,大多数情况下是有中索引,花费0.4秒,但有时候是全表扫描,花费4000多秒,我百思不得其解。
SQL的大概结构如下:
select count(*)as ct from business t
inner join order_log ol on ol.no = t.no and ol.type = 'a'
inner join order o on o.no = ol.no and o.type = 'a'
where t.create_time >= DATE_SUB(NOW(), INTERVAL 2 DAY)
and t.create_time < DATE_SUB(NOW(), INTERVAL 1 DAY)
and t.message_body like '%a%' and t.message_body not like '%b%'
and t.result_code = 400
9.MYSQL内存不足
有些SQL,有些情况下查询时间只花了几十毫秒,但有时候花费了两三秒,SQL是有中索引的,DBA回复说是系统的内存不够导致需要将扫描出来的数据放入磁盘,从而使用查询效率低下。
上一篇: MySQL索引原理及慢查询优化
下一篇: Mysql索引数据结构及原理