欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python 用Matplotlib作图中有多个Y轴

程序员文章站 2022-03-07 11:05:24
在作图过程中,需要绘制多个变量,但是每个变量的数量级不同,在一个坐标轴下作图导致曲线变化很难观察,这时就用到多个坐标轴。本文除了涉及多个坐标轴还包括axisartist相关作图指令、做图中label为...

在作图过程中,需要绘制多个变量,但是每个变量的数量级不同,在一个坐标轴下作图导致曲线变化很难观察,这时就用到多个坐标轴。本文除了涉及多个坐标轴还包括axisartist相关作图指令、做图中label为公式的表达方式、matplotlib中常用指令。

一、放一个官方例子先

from mpl_toolkits.axisartist.parasite_axes import hostaxes, parasiteaxes
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure(1) #定义figure,(1)中的1是什么
ax_cof = hostaxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1

#parasite addtional axes, share x
ax_temp = parasiteaxes(ax_cof, sharex=ax_cof)
ax_load = parasiteaxes(ax_cof, sharex=ax_cof)
ax_cp = parasiteaxes(ax_cof, sharex=ax_cof)
ax_wear = parasiteaxes(ax_cof, sharex=ax_cof)

#append axes
ax_cof.parasites.append(ax_temp)
ax_cof.parasites.append(ax_load)
ax_cof.parasites.append(ax_cp)
ax_cof.parasites.append(ax_wear)

#invisible right axis of ax_cof
ax_cof.axis['right'].set_visible(false)
ax_cof.axis['top'].set_visible(false)
ax_temp.axis['right'].set_visible(true)
ax_temp.axis['right'].major_ticklabels.set_visible(true)
ax_temp.axis['right'].label.set_visible(true)

#set label for axis
ax_cof.set_ylabel('cof')
ax_cof.set_xlabel('distance (m)')
ax_temp.set_ylabel('temperature')
ax_load.set_ylabel('load')
ax_cp.set_ylabel('cp')
ax_wear.set_ylabel('wear')

load_axisline = ax_load.get_grid_helper().new_fixed_axis
cp_axisline = ax_cp.get_grid_helper().new_fixed_axis
wear_axisline = ax_wear.get_grid_helper().new_fixed_axis

ax_load.axis['right2'] = load_axisline(loc='right', axes=ax_load, offset=(40,0))
ax_cp.axis['right3'] = cp_axisline(loc='right', axes=ax_cp, offset=(80,0))
ax_wear.axis['right4'] = wear_axisline(loc='right', axes=ax_wear, offset=(120,0))

fig.add_axes(ax_cof)

''' #set limit of x, y
ax_cof.set_xlim(0,2)
ax_cof.set_ylim(0,3)
'''

curve_cof, = ax_cof.plot([0, 1, 2], [0, 1, 2], label="cof", color='black')
curve_temp, = ax_temp.plot([0, 1, 2], [0, 3, 2], label="temp", color='red')
curve_load, = ax_load.plot([0, 1, 2], [1, 2, 3], label="load", color='green')
curve_cp, = ax_cp.plot([0, 1, 2], [0, 40, 25], label="cp", color='pink')
curve_wear, = ax_wear.plot([0, 1, 2], [25, 18, 9], label="wear", color='blue')

ax_temp.set_ylim(0,4)
ax_load.set_ylim(0,4)
ax_cp.set_ylim(0,50)
ax_wear.set_ylim(0,30)

ax_cof.legend()

#轴名称,刻度值的颜色
#ax_cof.axis['left'].label.set_color(ax_cof.get_color())
ax_temp.axis['right'].label.set_color('red')
ax_load.axis['right2'].label.set_color('green')
ax_cp.axis['right3'].label.set_color('pink')
ax_wear.axis['right4'].label.set_color('blue')

ax_temp.axis['right'].major_ticks.set_color('red')
ax_load.axis['right2'].major_ticks.set_color('green')
ax_cp.axis['right3'].major_ticks.set_color('pink')
ax_wear.axis['right4'].major_ticks.set_color('blue')

ax_temp.axis['right'].major_ticklabels.set_color('red')
ax_load.axis['right2'].major_ticklabels.set_color('green')
ax_cp.axis['right3'].major_ticklabels.set_color('pink')
ax_wear.axis['right4'].major_ticklabels.set_color('blue')

ax_temp.axis['right'].line.set_color('red')
ax_load.axis['right2'].line.set_color('green')
ax_cp.axis['right3'].line.set_color('pink')
ax_wear.axis['right4'].line.set_color('blue')

plt.show()

该例子的作图结果为:

python 用Matplotlib作图中有多个Y轴

二、实际绘制

在实际使用中希望绘制的多变量数值如下表所示:

python 用Matplotlib作图中有多个Y轴

为了实现这个作图,经过反复修改美化,代码如下:

1.导入包

from mpl_toolkits.axisartist.parasite_axes import hostaxes, parasiteaxes
import matplotlib.pyplot as plt

2.导入数据

x = ['atl','lax','clt','las','msp','dtw','phx','dca','slc','ord','dfw','phl','pdx','den','iah','bos','san','bwi','mdw','ind']
k_in = [49.160,47.367,26.858,30.315,16.552,28.590,23.905,18.818,28.735,6.721,10.315,26.398,38.575,7.646,11.227,8.864,15.327,19.120,11.521,19.618]
k_out = [38.024,19.974,25.011,22.050,30.108,18.327,20.811,28.464,23.72,8.470,4.119,10.000,25.158,7.851,10.450,11.130,15.441,7.519,20.819,32.825]
p = [0.0537,0.0301,0.0306,0.0217,0.0229,0.0223,0.0218,0.0179,0.0155,0.0465,0.0419,0.0165,0.0091,0.0357,0.0232,0.0200,0.0129,0.0143,0.0113,0.0064]
k = [4.6844,2.0296,1.5858,1.1347,1.0706,1.0442,0.9764,0.8447,0.8141,0.7066,0.6041,0.5990,0.5808,0.5534,0.5023,0.3992,0.3964,0.3799,0.3639,0.3331]

3.作图并保存,相关指令后有备注,可以帮助理解

fig = plt.figure(1) #定义figure

ax_k = hostaxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1

#parasite addtional axes, share x
ax_p = parasiteaxes(ax_k, sharex=ax_k)
ax_k = parasiteaxes(ax_k, sharex=ax_k)

#append axes
ax_k.parasites.append(ax_p)
ax_k.parasites.append(ax_k)

ax_k.set_ylabel('$k_i^{in}\;/\;k_i^{out}$')
ax_k.axis['bottom'].major_ticklabels.set_rotation(45)
ax_k.set_xlabel('airport')
ax_k.axis['bottom','left'].label.set_fontsize(12) # 设置轴label的大小
ax_k.axis['bottom'].major_ticklabels.set_pad(8) #设置x轴坐标刻度与x轴的距离,坐标轴刻度旋转会使label和坐标轴重合
ax_k.axis['bottom'].label.set_pad(12) #设置x轴坐标刻度与x轴label的距离,label会和坐标轴刻度重合
ax_k.axis[:].major_ticks.set_tick_out(true) #设置坐标轴上刻度突起的短线向外还是向内

#invisible right axis of ax_k
ax_k.axis['right'].set_visible(false)
ax_k.axis['top'].set_visible(true)
ax_p.axis['right'].set_visible(true)
ax_p.axis['right'].major_ticklabels.set_visible(true)
ax_p.axis['right'].label.set_visible(true)
ax_p.axis['right'].major_ticks.set_tick_out(true)
ax_p.set_ylabel('${p_i}$')
ax_p.axis['right'].label.set_fontsize(13)
ax_k.set_ylabel('${k_i}$')

k_axisline = ax_k.get_grid_helper().new_fixed_axis

ax_k.axis['right2'] = k_axisline(loc='right', axes=ax_k, offset=(60,0))
ax_k.axis['right2'].major_ticks.set_tick_out(true)
ax_k.axis['right2'].label.set_fontsize(13)
fig.add_axes(ax_k)

curve_k1, = ax_k.plot(list(range(20)), k_in, marker ='v',markersize=8,label="$k_i^{in}$",alpha = 0.7)
curve_k2, = ax_k.plot(list(range(20)), k_out, marker ='^',markersize=8, label="$k_i^{out}$",alpha = 0.7)
curve_p, = ax_p.plot(list(range(20)), p, marker ='p',markersize=8,label="${p_i}$",alpha = 0.7)
curve_k, = ax_k.plot(list(range(20)), k, marker ='o',markersize=8, label="${k_i}$",alpha = 0.7,linewidth=3)
plt.xticks(list(range(20)), x)
# ax_k.set_xticks(list(range(20))) 
# ax_k.set_xticklabels(x)
ax_k.axis['bottom'].major_ticklabels.set_rotation(45)

# ax_k.set_rotation(90)
# plt.xticks(list(range(20)), x, rotation = 'vertical')

ax_p.set_ylim(0,0.06)
ax_k.set_ylim(0,5)

ax_k.legend(labelspacing = 0.4, fontsize = 10)

#轴名称,刻度值的颜色 

ax_p.axis['right'].label.set_color(curve_p.get_color()) # 坐标轴label的颜色
ax_k.axis['right2'].label.set_color(curve_k.get_color())


ax_p.axis['right'].major_ticks.set_color(curve_p.get_color()) # 坐标轴刻度小突起的颜色
ax_k.axis['right2'].major_ticks.set_color(curve_k.get_color())

ax_p.axis['right'].major_ticklabels.set_color(curve_p.get_color()) # 坐标轴刻度值的颜色
ax_k.axis['right2'].major_ticklabels.set_color(curve_k.get_color())

ax_p.axis['right'].line.set_color(curve_p.get_color()) # 坐标轴线的颜色
ax_k.axis['right2'].line.set_color(curve_k.get_color())
plt.savefig('10.key metrics mapping.pdf', bbox_inches='tight', dpi=800)
plt.show()

4.绘制结果

python 用Matplotlib作图中有多个Y轴

ps

该作图是在axisartist的基础上完成的,一些平时常用的绘制指令在此处是无用的。经过查找相关资料, 该网站可以提供一些用法的帮助。

以上就是python 用matplotlib作图中有多个y轴的详细内容,更多关于python matplotlib作图的资料请关注其它相关文章!