python爬虫之xpath案例——全国城市名称爬取
程序员文章站
2022-05-07 23:08:46
...
# 需求:解析出所有城市名称
# url : https://www.aqistudy.cn/historydata/
import requests
from lxml import etree
# # 分别爬取热门城市和全部城市的信息: 即需要两个循环
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36 Edg/89.0.774.63'
# }
# url = 'https://www.aqistudy.cn/historydata/'
# page_text = requests.get(url=url,headers=headers).text
# tree = etree.HTML(page_text)
# hot_city_list = tree.xpath('//div[@class="bottom"]/ul/li')
# all_city_names = []
# # 解析到了热门城市的城市名称
# for li in hot_city_list:
# hot_city_name = li.xpath('./a/text()')[0]
# all_city_names.append(hot_city_name)
#
# # 解析的是全部城市的名称
# all_city_list = tree.xpath('//div[@class="bottom"]/ul/div[2]/li')
# for li in all_city_list:
# all_city_name = li.xpath('./a/text()')
# all_city_names.append(all_city_name)
#
# print(all_city_names,len(all_city_names))
# 能不能不分开爬取 直接一次性爬取呢?
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36 Edg/89.0.774.63'
}
url = 'https://www.aqistudy.cn/historydata/'
page_text = requests.get(url=url,headers=headers).text
tree = etree.HTML(page_text)
city_names = []
# 同时解析到热门城市和所有城市的a标签
# 热门城市层级关系: div[@class="bottom"]/ul/li/a
# 所有城市层级关系: div[@class="bottom"]/ul/div[2]/li/a
# 使用 “ | ”运算符
a_list = tree.xpath('//div[@class="bottom"]/ul/li/a | //div[@class="bottom"]/ul/div[2]/li/a')
for a in a_list:
city_name = a.xpath('./text()')
city_names.append(city_name)
print(city_names,'\n',len(city_names))