在linux中用同一个版本的R 同时安装 Seurat2 和 Seurat3的教程
seurat 作为单细胞分析中的重量级r包,有多好用用,用过的人都知道。seurat 分析流程基本涵盖了单细胞分析中的所有常见分析方法,包括filtering,tsne,umap降维及画图等。还有一个重量级功能就是矫正不同实验之间的批次效应。然而seurat 2和seurat 3的矫正方法完全不一样,得到的结果也不一致。
seurat 2是基于cca (典型相关性)的,可以矫正肿瘤,外周血及癌旁组织间由于实验带来的批次效应,也能很好的矫正用不同的单细胞实验平台进行试验带来的批次效应。虽然速度慢,效果还是不错的。而seurat 3 则是基于样本间具有相似表达谱的细胞群来进行矫正,对于同一种性质的实验,由于不同单细胞技术造成的实验批次效应,seurat 3 能够很好的矫正。从官网给的pancers矫正结果就可以看到其矫正能力多么强大。然而正式因为如此强大的矫正能力,对于肿瘤和外周血样本的矫正却过了头,导致不该分在一起的细胞具有了相似的基因表达谱。本人也是做了好几个课题,发现都存在这样的问题,因此果断放弃seurat 3的矫正方法,继续用seurat 2的。但是seurat 3的 findmarker 这个功能可以一次计算10万以上的细胞不报错,而seurat 2就不行,折衷的方案是同时安装 seurat 2和 seurat 3的包,在内存里切换数据,而不用写到本地后再用seurat 3读取后升级。
尤其是对于动辄10几万个细胞来说,保存数据到本地这个操作要花费至少30min, 读取也要30min.
下面我就告诉大家不用读写到本地就可以在seurat 2 和 seurat 3之间完美切换,。
其实方法很简单,将seurat 2和 seurat 3 安装在不同的 library 里面就行了。
我已经安装好了,以我自己进行的*切换为例:
> r.version _ platform x86_64-conda_cos6-linux-gnu arch x86_64 os linux-gnu system x86_64, linux-gnu status major 3 minor 6.1 year 2019 month 07 day 05 svn rev 76782 language r version.string r version 3.6.1 (2019-07-05) nickname action of the toes
我用的是最新的r版本 3.6.1很好用。
默认的library 是conda 自带的
> .libpaths() [1] "/data/home/heshuai/anaconda3/lib/r/library"
默认的seurat是最新版的 seurat 3
> library(seurat) registered s3 method overwritten by 'r.oo': method from throw.default r.methodss3 > packageversion("seurat") [1] ‘3.0.2'
我在另一个library 里安装了 seurat 2
/data/home/heshuai/r/x86_64-conda_cos6-linux-gnu-library
在两者间*切换
1. 首先将 seurat 2 所在的library 加载进来
> .libpaths("/data/home/heshuai/r/x86_64-conda_cos6-linux-gnu-library") > .libpaths() [1] "/data/home/heshuai/r/x86_64-conda_cos6-linux-gnu-library" "/data/home/heshuai/anaconda3/lib/r/library" >
2. detach seurat 3 后加载 seurat 2, 因为这个时候seurat 2 所在的library 已经在seurat 3 之前了,系统会默认先加载seurat 2
> detach("package:seurat", unload = t) > library(seurat) loading required package: ggplot2 rstudio community is a great place to get help: https://community.rstudio.com/c/tidyverse. loading required package: cowplot ******************************************************** note: as of version 1.0.0, cowplot does not change the default ggplot2 theme anymore. to recover the previous behavior, execute: theme_set(theme_cowplot()) ******************************************************** loading required package: matrix > packageversion("seurat") [1] ‘2.3.4' >
现在seurat 3已经成功的切换成seurat 2了. 想要加载seurat 3的时候,将默认library 换到seurat 2的前面即可。
是不是 so easy !
总结
以上所述是小编给大家介绍的在linux中用同一个版本的r 同时安装 seurat2 和 seurat3的教程,希望对大家有所帮助
上一篇: 怎样做自己的二级域名(之二)