欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python中黄金分割法实现方法

程序员文章站 2022-05-07 12:58:07
...
本文实例讲述了python中黄金分割法实现方法。分享给大家供大家参考。具体实现方法如下:
''' a,b = bracket(f,xStart,h)
  Finds the brackets (a,b) of a minimum point of the
  user-supplied scalar function f(x).
  The search starts downhill from xStart with a step
  length h.
  x,fMin = search(f,a,b,tol=1.0e-6)
  Golden section method for determining x that minimizes
  the user-supplied scalar function f(x).
  The minimum must be bracketed in (a,b).
'''    
from math import log, ceil
def bracket(f,x1,h):
  c = 1.618033989 
  f1 = f(x1)
  x2 = x1 + h; f2 = f(x2)
 # Determine downhill direction and change sign of h if needed
  if f2 > f1:
    h = -h
    x2 = x1 + h; f2 = f(x2)
   # Check if minimum between x1 - h and x1 + h
    if f2 > f1: return x2,x1 - h 
 # Search loop
  for i in range (100):  
    h = c*h
    x3 = x2 + h; f3 = f(x3)
    if f3 > f2: return x1,x3
    x1 = x2; x2 = x3
    f1 = f2; f2 = f3
  print "Bracket did not find a mimimum"    
def search(f,a,b,tol=1.0e-9):
  nIter = int(ceil(-2.078087*log(tol/abs(b-a)))) # Eq. (10.4)
  R = 0.618033989
  C = 1.0 - R
 # First telescoping
  x1 = R*a + C*b; x2 = C*a + R*b
  f1 = f(x1); f2 = f(x2)
 # Main loop
  for i in range(nIter):
    if f1 > f2:
      a = x1
      x1 = x2; f1 = f2
      x2 = C*a + R*b; f2 = f(x2)
    else:
      b = x2
      x2 = x1; f2 = f1
      x1 = R*a + C*b; f1 = f(x1)
  if f1 

希望本文所述对大家的Python程序设计有所帮助。

python中黄金分割法实现方法

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn核实处理。

相关文章

相关视频