欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现Canny与Hough算法

程序员文章站 2022-01-09 09:53:48
任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。效果代码实现Canny边缘检测:# Author: Ji Qiu (BUPT)# filename: my_canny.pyimport cv2import numpy as npclass Canny: def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_thresho...

文章首发:xmoon.info

任务说明:编写一个钱币定位系统,其不仅能够检测出输入图像中各个钱币的边缘,同时,还能给出各个钱币的圆心坐标与半径。

效果

python实现Canny与Hough算法

代码实现

Canny边缘检测

# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np


class Canny:

    def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):
        '''
        :param Guassian_kernal_size: 高斯滤波器尺寸
        :param img: 输入的图片,在算法过程中改变
        :param HT_high_threshold: 滞后阈值法中的高阈值
        :param HT_low_threshold: 滞后阈值法中的低阈值
        '''
        self.Guassian_kernal_size = Guassian_kernal_size
        self.img = img
        self.y, self.x = img.shape[0:2]
        self.angle = np.zeros([self.y, self.x])
        self.img_origin = None
        self.x_kernal = np.array([[-1, 1]])
        self.y_kernal = np.array([[-1], [1]])
        self.HT_high_threshold = HT_high_threshold
        self.HT_low_threshold = HT_low_threshold

    def Get_gradient_img(self):
        '''
        计算梯度图和梯度方向矩阵。
        :return: 生成的梯度图
        '''
        print ('Get_gradient_img')
        
        new_img_x = np.zeros([self.y, self.x], dtype=np.float)
        new_img_y = np.zeros([self.y, self.x], dtype=np.float)
        for i in range(0, self.x):
            for j in range(0, self.y):
                if j == 0:
                    new_img_y[j][i] = 1
                else:
                    new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)
                if i == 0:
                    new_img_x[j][i] = 1
                else:
                    new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)

        gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位
        self.angle = np.tan(self.angle)
        self.img = gradient_img.astype(np.uint8)
        return self.img

    def Non_maximum_suppression (self):
        '''
        对生成的梯度图进行非极大化抑制,将tan值的大小与正负结合,确定离散中梯度的方向。
        :return: 生成的非极大化抑制结果图
        '''
        print ('Non_maximum_suppression')
        
        result = np.zeros([self.y, self.x])
        for i in range(1, self.y - 1):
            for j in range(1, self.x - 1):
                if abs(self.img[i][j]) <= 4:
                    result[i][j] = 0
                    continue
                elif abs(self.angle[i][j]) > 1:
                    gradient2 = self.img[i - 1][j]
                    gradient4 = self.img[i + 1][j]
                    # g1 g2
                    #    C
                    #    g4 g3
                    if self.angle[i][j] > 0:
                        gradient1 = self.img[i - 1][j - 1]
                        gradient3 = self.img[i + 1][j + 1]
                    #    g2 g1
                    #    C
                    # g3 g4
                    else:
                        gradient1 = self.img[i - 1][j + 1]
                        gradient3 = self.img[i + 1][j - 1]
                else:
                    gradient2 = self.img[i][j - 1]
                    gradient4 = self.img[i][j + 1]
                    # g1
                    # g2 C g4
                    #      g3
                    if self.angle[i][j] > 0:
                        gradient1 = self.img[i - 1][j - 1]
                        gradient3 = self.img[i + 1][j + 1]
                    #      g3
                    # g2 C g4
                    # g1
                    else:
                        gradient3 = self.img[i - 1][j + 1]
                        gradient1 = self.img[i + 1][j - 1]

                temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
                temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
                if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
                    result[i][j] = self.img[i][j]
                else:
                    result[i][j] = 0
        self.img = result
        return self.img

    def Hysteresis_thresholding(self):
        '''
        对生成的非极大化抑制结果图进行滞后阈值法,用强边延伸弱边,这里的延伸方向为梯度的垂直方向,
        将比低阈值大比高阈值小的点置为高阈值大小,方向在离散点上的确定与非极大化抑制相似。
        :return: 滞后阈值法结果图
        '''
        print ('Hysteresis_thresholding')
        
        for i in range(1, self.y - 1):
            for j in range(1, self.x - 1):
                if self.img[i][j] >= self.HT_high_threshold:
                    if abs(self.angle[i][j]) < 1:
                        if self.img_origin[i - 1][j] > self.HT_low_threshold:
                            self.img[i - 1][j] = self.HT_high_threshold
                        if self.img_origin[i + 1][j] > self.HT_low_threshold:
                            self.img[i + 1][j] = self.HT_high_threshold
                        # g1 g2
                        #    C
                        #    g4 g3
                        if self.angle[i][j] < 0:
                            if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                                self.img[i - 1][j - 1] = self.HT_high_threshold
                            if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                                self.img[i + 1][j + 1] = self.HT_high_threshold
                        #    g2 g1
                        #    C
                        # g3 g4
                        else:
                            if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                                self.img[i - 1][j + 1] = self.HT_high_threshold
                            if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                                self.img[i + 1][j - 1] = self.HT_high_threshold
                    else:
                        if self.img_origin[i][j - 1] > self.HT_low_threshold:
                            self.img[i][j - 1] = self.HT_high_threshold
                        if self.img_origin[i][j + 1] > self.HT_low_threshold:
                            self.img[i][j + 1] = self.HT_high_threshold
                        # g1
                        # g2 C g4
                        #      g3
                        if self.angle[i][j] < 0:
                            if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                                self.img[i - 1][j - 1] = self.HT_high_threshold
                            if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                                self.img[i + 1][j + 1] = self.HT_high_threshold
                        #      g3
                        # g2 C g4
                        # g1
                        else:
                            if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                                self.img[i + 1][j - 1] = self.HT_high_threshold
                            if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                                self.img[i + 1][j - 1] = self.HT_high_threshold
        return self.img

    def canny_algorithm(self):
        '''
        按照顺序和步骤调用以上所有成员函数。
        :return: Canny 算法的结果
        '''
        self.img = cv2.GaussianBlur(self.img, (self.Guassian_kernal_size, self.Guassian_kernal_size), 0)
        self.Get_gradient_img()
        self.img_origin = self.img.copy()
        self.Non_maximum_suppression()
        self.Hysteresis_thresholding()
        return self.img

Hough变换

# Author: Ji Qiu (BUPT)
# filename: my_hough.py


import numpy as np
import math

class Hough_transform:
    def __init__(self, img, angle, step=5, threshold=135):
        '''

        :param img: 输入的图像
        :param angle: 输入的梯度方向矩阵
        :param step: Hough 变换步长大小
        :param threshold: 筛选单元的阈值
        '''
        self.img = img
        self.angle = angle
        self.y, self.x = img.shape[0:2]
        self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
        self.step = step
        self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)])
        self.threshold = threshold
        self.circles = []

    def Hough_transform_algorithm(self):
        '''
        按照 x,y,radius 建立三维空间,根据图片中边上的点沿梯度方向对空间中的所有单
        元进行投票。每个点投出来结果为一折线。
        :return:  投票矩阵
        '''
        print ('Hough_transform_algorithm')
        
        for i in range(1, self.y - 1):
            for j in range(1, self.x - 1):
                if self.img[i][j] > 0:
                    y = i
                    x = j
                    r = 0
                    while y < self.y and x < self.x and y >= 0 and x >= 0:
                        self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
                        y = y + self.step * self.angle[i][j]
                        x = x + self.step
                        r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
                    y = i - self.step * self.angle[i][j]
                    x = j - self.step
                    r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
                    while y < self.y and x < self.x and y >= 0 and x >= 0:
                        self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
                        y = y - self.step * self.angle[i][j]
                        x = x - self.step
                        r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

        return self.vote_matrix


    def Select_Circle(self):
        '''
        按照阈值从投票矩阵中筛选出合适的圆,并作极大化抑制,这里的非极大化抑制我采
        用的是邻近点结果取平均值的方法,而非单纯的取极大值。
        :return: None
        '''
        print ('Select_Circle')
        
        houxuanyuan = []
        for i in range(0, math.ceil(self.y / self.step)):
            for j in range(0, math.ceil(self.x / self.step)):
                for r in range(0, math.ceil(self.radius / self.step)):
                    if self.vote_matrix[i][j][r] >= self.threshold:
                        y = i * self.step + self.step / 2
                        x = j * self.step + self.step / 2
                        r = r * self.step + self.step / 2
                        houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r)))
        if len(houxuanyuan) == 0:
            print("No Circle in this threshold.")
            return
        x, y, r = houxuanyuan[0]
        possible = []
        middle = []
        for circle in houxuanyuan:
            if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
                possible.append([circle[0], circle[1], circle[2]])
            else:
                result = np.array(possible).mean(axis=0)
                middle.append((result[0], result[1], result[2]))
                possible.clear()
                x, y, r = circle
                possible.append([x, y, r])
        result = np.array(possible).mean(axis=0)
        middle.append((result[0], result[1], result[2]))

        def takeFirst(elem):
            return elem[0]

        middle.sort(key=takeFirst)
        x, y, r = middle[0]
        possible = []
        for circle in middle:
            if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
                possible.append([circle[0], circle[1], circle[2]])
            else:
                result = np.array(possible).mean(axis=0)
                print("Circle core: (%f, %f)  Radius: %f" % (result[0], result[1], result[2]))
                self.circles.append((result[0], result[1], result[2]))
                possible.clear()
                x, y, r = circle
                possible.append([x, y, r])
        result = np.array(possible).mean(axis=0)
        print("Circle core: (%f, %f)  Radius: %f" % (result[0], result[1], result[2]))
        self.circles.append((result[0], result[1], result[2]))
 

    def Calculate(self):
        '''
        按照算法顺序调用以上成员函数
        :return: 圆形拟合结果图,圆的坐标及半径集合
        '''
        self.Hough_transform_algorithm()
        self.Select_Circle()
        return self.circles

调用

# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from  my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
    img_gray = cv2.imread(Path, cv2.IMREAD_GRAYSCALE)
    img_RGB = cv2.imread(Path)
    y, x = img_gray.shape[0:2]
    img_gray = cv2.resize(img_gray, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
    img_RGB = cv2.resize(img_RGB, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
    # canny takes about 40 seconds
    print ('Canny ...')
    canny = Canny(Guassian_kernal_size, img_gray, HT_high_threshold, HT_low_threshold)
    canny.canny_algorithm()
    cv2.imwrite(Save_Path + "canny_result.jpg", canny.img)
    
    # hough takes about 30 seconds
    print ('Hough ...')
    Hough = Hough_transform(canny.img, canny.angle, Hough_transform_step, Hough_transform_threshold)
    circles = Hough.Calculate()
    for circle in circles:
        cv2.circle(img_RGB, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2)
    cv2.imwrite(Save_Path + "hough_result.jpg", img_RGB)
    print ('Finished!')

运行效果

python实现Canny与Hough算法

学习资源:北京邮电大学计算机视觉——鲁鹏

本文地址:https://blog.csdn.net/moonoa/article/details/107669000