欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  Java

Java中的二进制及位运算详解

程序员文章站 2022-05-05 20:11:42
...

1.表示方法:  

在Java语言中,二进制数使用补码表示,最高位为符号位,正数的符号位为0,负数为1。补码的表示需要满足如下要求。  

(1)正数的最高位为0,其余各位代表数值本身(二进制数)。  

(2)对于负数,通过对该数绝对值的补码按位取反,再对整个数加1。

2.位运算符  

位运算表达式由操作数和位运算符组成,实现对整数类型的二进制数进行位运算。位运算符可以分为逻辑运算符(包括~、&、|和^)及移位运算符(包括>>、<<和>>>)。

1)左移位运算符(<<)能将运算符左边的运算对象向左移动运算符右侧指定的位数(在低位补0)。

2)“有符号”右移位运算符(>>)则将运算符左边的运算对象向右移动运算符右侧指定的位数。 “有符号”右移位运算符使用了“符号扩展”:若值为正,则在高位插入0;若值为负,则在高位插入1。

3)Java也添加了一种“无符号”右移位运算符(>>>),它使用了“零扩展”:无论正负,都在高位插入0。这一运算符是C或C++没有的。

4)若对char,byte或者short进行移位处理,那么在移位进行之前,它们会自动转换成一个int。 只有右侧的5个低位才会用到。这样可防止我们在一个int数里移动不切实际的位数。 若对一个long值进行处理,最后得到的结果也是long。此时只会用到右侧的6个低位,防止移动超过long值里现成的位数。 但在进行“无符号”右移位时,也可能遇到一个问题。若对byte或short值进行右移位运算,得到的可能不是正确的结果(Java 1.0和Java 1.1特别突出)。 它们会自动转换成int类型,并进行右移位。但“零扩展”不会发生,所以在那些情况下会得到-1的结果。

 二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

  那么Java中的二进制又是怎么样的呢?让我们一起来揭开它神秘的面纱吧。


一、Java内置的进制转换

有关十进制转为二进制,和二进制转为十进制这种基本的运算方法这里就不展开讲了。

在Java中内置了几个方法来帮助我们进行各种进制的转换。如下图所示(以Integer整形为例,其他类型雷同):

Java中的二进制及位运算详解

1,十进制转化为其他进制:


1 二进制:Integer.toHexString(int i);2 八进制:Integer.toOctalString(int i);3 十六进制:Integer.toBinaryString(int i);

2,其他进制转化为十进制:

1 二进制:Integer.valueOf("0101",2).toString;2 八进制:Integer.valueOf("376",8).toString;3 十六进制:Integer.valueOf("FFFF",16).toString;

3,使用Integer类中的parseInt()方法和valueOf()方法都可以将其他进制转化为10进制。

不同的是parseInt()方法的返回值是int类型,而valueOf()返回值是Integer对象。


二、基本的位运算

二进制可以和十进制一样加减乘除,但是它还有更简便的运算方式就是——位运算。比如在计算机中int类型的大小是32bit,可以用32位的二进制数来表示,所以我们可以用位运算来对int类型的数值进行计算,当然你也可以用平常的方法来计算一些数据,这里我主要为大家介绍位运算的方法。我们会发现位运算有着普通运算方法不可比拟的力量。更多位运算应用请转移到我下篇博文《神奇的位运算》

首先,看一下位运算的基本操作符

Java中的二进制及位运算详解

优点:

  • 特定情况下,计算方便,速度快,被支持面广

  • 如果用算数方法,速度慢,逻辑复杂

  • 位运算不限于一种语言,它是计算机的基本运算方法

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

(一)按位与&

两位全为1,结果才为1

0&0=0;0&1=0;1&0=0;1&1=1

例如:51&5 即0011 0011 & 0000 0101 =0000 0001 因此51&5=1.

特殊用法

(1)清零。如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都是零的数值相与,结果为零。

(2)取一个数中指定位。

例如:设X=10101110,取X的低四位,用X&0000 1111=0000 1110即可得到。

方法:找一个数,对应x要取的位,该数的对应位为1,其余位为零,此数与x进行“与运算”可以得到x中的指定位。

(二)按位或 |

只要有一个为1,结果就为1。

0|0=0; 0|1=1;1|0=1;1|1=1;

例如:51|5 即0011 0011 | 0000 0101 =0011 0111 因此51|5=55

特殊用法

常用来对一个数据的某些位置1。

方法:找到一个数,对应x要置1的位,该数的对应位为1,其余位为零。此数与x相或可使x中的某些位置1。

(三)异或 ^

两个相应位为“异”(值不同),则该位结果为1,否则为0

0^0=0; 0^1=1; 1^0=1; 1^1=0;

例如:51^5 即0011 0011 ^ 0000 0101 =0011 0110 因此51^5=54

特殊用法

(1) 与1相异或,使特定位翻转

方法:找一个数,对应X要翻转的位,该数的对应为1,其余位为零,此数与X对应位异或即可。

例如:X=1010 1110,使X低四位翻转,用X^0000 1111=1010 0001即可得到。

(2) 与0相异或,保留原值

例如:X^0000 0000 =1010 1110

(3)两个变量交换值

1.借助第三个变量来实现

C=A;A=B;B=C;

2.利用加减法实现两个变量的交换

A=A+B;B=A-B;A=A-B;

3.用位异或运算来实现,也是效率最高的

原理:一个数异或本身等于0 ;异或运算符合交换律

A=A^B;B=A^B;A=A^B

(四)取反与运算~

对一个二进制数按位取反,即将0变为1,1变0

~1=0 ;~0=1

(五)左移<<

将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)

例如: 2<<1 =4 10<<1=100

若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。

例如:

11(1011)<<2= 0010 1100=22

11(00000000 00000000 00000000 1011)整形32bit

(六)右移>>

将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。若右移时舍高位不是1(即不是负数),操作数每右移一位,相当于该数除以2。

左补0还是补1得看被移数是正还是负。

例如:4>>2=4/2/2=1

-14(即1111 0010)>>2 =1111 1100=-4

(七)无符号右移运算>>>

各个位向右移指定的位数,右移后左边空出的位用零来填充,移除右边的位被丢弃。

例如:-14>>>2

(即11111111 11111111 11111111 11110010)>>>2

=(00111111 11111111 11111111 11111100)=1073741820

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

上述提到的负数,他的二进制位表示和正数略有不同,所以在位运算的时候也与正数不同。

负数以其正数的补码形式表示

以上述的-14为例,来简单阐述一下原码、反码和补码。

原 码

一个整数按照绝对值大小转化成的二进制数称为原码

例如:00000000 00000000 00000000 00001110 是14的原码。

反 码

将二进制数按位取反,所得到的新二进制数称为原二进制数的反码。

例如:将00000000 00000000 00000000 00001110 每一位取反,

得11111111 11111111 11111111 11110001

注意:这两者互为反码

补 码

反码加1称为补码

11111111 11111111 11111111 11110001 +1=

11111111 11111111 11111111 11110010

现在我们得到-14的二进制表示,现在将它左移

-14(11111111 11111111 11111111 11110010)<<2 =

11111111 11111111 11111111 11001000

=?

分析:这个二进制的首位为1,说明是补码形式,现在我们要将补码转换为原码(它的正值)

跟原码转换为补码相反,将补码转换为原码的步骤:

  1. 补码减1得到反码:(11000111)前24位为1,此处省略

  2. 反码取反得到原码(即该负数的正值)(00111000)

  3. 计算正值,正值为56

  4. 取正值的相反数,得到结果-56

结论:-14<<2 = -56


三、Java中进制运算

Java中二进制用的多吗?

平时开发中“进制转换”和“位操作”用的不多,Java处理的是高层。

在跨平台中用的较多,如:文件读写,数据通信。

来看一个场景:

Java中的二进制及位运算详解

如果客户机和服务器都是用Java语言写的程序,那么当客户机发送对象数据,我们就可以把要发送的数据序列化serializable,服务器端得到序列化的数据之后就可以反序列化,读出里面的对象数据。

随着客户机访问量的增大,我们不考虑服务器的性能,其实一个可行的方案就是把服务器的Java语言改成C语言。

C语言作为底层语言,反映速度都比Java语言要快,而此时如果客户端传递的还是序列化的数据,那么服务器端的C语言将无法解析,怎么办呢?我们可以把数据转为二进制(0,1),这样的话服务器就可以解析这些语言。

Java中的二进制及位运算详解

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Java中基本数据类型有以下四种:

  1. Int数据类型:byte(8bit,-128~127)、short(16bit)、int(32bit)、long(64bit)

  2. float数据类型:单精度(float,32bit ) 、双精度(double,64bit)

  3. boolean类型变量的取值有true、false(都是1bit)

  4. char数据类型:unicode字符,16bit

对应的类类型:

Integer、Float、Boolean、Character、Double、Short、Byte、Long

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

(一)数据类型转为字节

例如:int型8143(00000000 00000000 00011111 11001111)

=>byte[] b=[-49,31,0,0]

第一个(低端)字节:8143>>0*8 & 0xff=(11001111)=207(或有符号-49)

第二个(低端)字节:8143>>1*8 &0xff=(00011111)=31

第三个(低端)字节:8143>>2*8 &0xff=00000000=0

第四个(低端)字节:8143>>3*8 &0xff=00000000=0

我们注意到上面的(低端)是从右往左开始的,那什么是低端呢?我们从大小端的角度来说明。

小端法(Little-Endian)

位字节排放在内存的地址端即该值的起始地址,位字节排位在内存的地址端

大端法(Big-Endian)

位字节排放在内存的地址端即该值的起始地址,位字节排位在内存的地址端

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

例如:32bit的数0x12 34 56 78(十二进制)

在Big-Endian模式CPU的存放方式(假设从地址0x4000开始存放)为

内存地址

0x4000

0x4001

0x4002

0x4003

存放内容

0x78

0x56

0x34

0x12

在Little-Endian模式CPU的存放方式(假设从地址0x4000开始存放)为

内存地址

0x4000

0x4001

0x4002

0x4003

存放内容

0x12

0x34

0x56

0x78

(二)字符串转化为字节

1.字符串->字节数组


1 String s;2 byte[] bs=s.getBytes();

2.字节数组->字符串


1 Byte[] bs=new byte[int];2 String s =new String(bs);或3 String s=new String(bs,encode);//encode指编码方式,如utf-8

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

两种类型转化为字节的方法都介绍了,下面写个小例子检验一下:


 1 public class BtyeTest { 2     /* 3      * int整型转为byte字节 4      */ 5     public static byte[] intTOBtyes(int in){ 6         byte[] arr=new byte[4]; 7         for(int i=0;i<4;i++){ 8             arr[i]=(byte)((in>>8*i) & 0xff); 9         }10         return arr;11     }12     /*13      * byte字节转为int整型14      */15     public static int bytesToInt(byte[] arr){16         int sum=0;17         for(int i=0;i<arr.length;i++){18             sum+=(int)(arr[i]&0xff)<<8*i;19         }20         return sum;21     }22     public static void main(String[] args) {23         // TODO Auto-generated method stub24         byte[] arr=intTOBtyes(8143);25         for(byte b:arr){26             System.out.print(b+" ");27         }28         System.out.println();29         System.out.println(bytesToInt(arr));30         31         //字符串与字节数组32         String str="云开的立夏de博客园";33         byte[] barr=str.getBytes();34         35         String str2=new String(barr);36         System.out.println("字符串转为字节数组:");37         for(byte b:barr){38             System.out.print(b+" ");39 40         }41         System.out.println();42 43         System.out.println("字节数组换位字符串:"+str2);44         45          46     }47 48 }

运行结果:

Java中的二进制及位运算详解


结束语:最近偷懒了,没有好好学习,好几天没写文了,哎,还请大家多多监督!

以上就是Java中的二进制及位运算详解的详细内容,更多请关注其它相关文章!