欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  Java

详解直接插入排序算法与相关的Java版代码实现

程序员文章站 2022-05-05 19:54:50
...
直接插入排序

直接插入排序的思路很容易理解,它是这样的:
1.把待排序的数组分成已排序和未排序两部分,初始的时候把第一个元素认为是已排好序的。
2.从第二个元素开始,在已排好序的子数组中寻找到该元素合适的位置并插入该位置。
3.重复上述过程直到最后一个元素被插入有序子数组中。
4.排序完成。

示例:
思路很简单,但代码并非像冒泡排序那么好写。首先,如何判断合适的位置?大于等于左边、小于等于右边?不行,很多边界条件需要考虑,而且判断次数太多。其次,数组中插入元素,必然需要移动大量元素,如何控制它们的移动?
实际上,这并不是算法本身的问题,而多少和编程语言有点关系了。有时候算法本身已经很成熟了,到了具体的编程语言还是要稍作改动。这里讲的是Java算法,那就拿Java说事儿。
为了解决上述问题,我们对第二步稍作细化,我们不从子数组的起始位置开始比较,而从子数组尾部开始逆序比较,只要比需要插入的数大,就向后移动。直到不大于该数的数,那么,这个空出来的位置就安放需要插入的数字。因此,我们可以写出以下代码:
InsertArray.java

public class InsertArray {
  // 数组
  private long[] arr;
 
  // 数组中有效数据的大小
  private int elems;
 
  // 默认构造函数
  public InsertArray() {
    arr = new long[50];
  }
 
  public InsertArray(int max) {
    arr = new long[max];
  }
 
  // 插入数据
  public void insert(long value) {
    arr[elems] = value;
    elems++;
  }
 
  // 显示数据
  public void display() {
    for (int i = 0; i < elems; i++) {
      System.out.print(arr[i] + " ");
    }
    System.out.println();
  }
 
  // 插入排序
  public void insertSort() {
    long select = 0L;
    for(int i = 1; i < elems; i++) {
      select = arr[i];
      int j = 0;
      for(j = i;j > 0 && arr[j - 1] >= select; j--) {
        arr[j] = arr[j - 1];
      }
      arr[j] = select;
    }
  }
}

测试类:
TestInsertArray.java

public class TestInsertArray {
  public static void main(String[] args) {
    InsertArray iArr = new InsertArray();
    iArr.insert(85);
    iArr.insert(7856);
    iArr.insert(12);
    iArr.insert(8);
    iArr.insert(5);
    iArr.insert(56);
 
    iArr.display();
    iArr.insertSort();
    iArr.display();
  }
 
}

算法性能/复杂度
现在讨论下直接插入算法的时间复杂度。无论输入如何,算法总会进行n-1轮排序。但是,由于每个元素的插入点是不确定的,受输入数据影响很大,其复杂度并不是一定的。我们可以分最佳、最坏、平均三种情况讨论。
1.最佳情况:由算法特点可知,当待排数组本身即为正序(数组有序且顺序与需要的顺序相同,于我们的讨论前提,即为升序)时为最佳,理由是这种情况下,每个元素只需要比较一次且无需移动。算法的时间复杂度为O(n);
2.最坏情况:很显然,当待排数组为逆序时为最坏情况,这种情况下我们的每轮比较次数为i-1, 赋值次数为i。总的次数为级数2n-1的前n项和,即n^2.算法的时间复杂度为O(n^2);
3.平均情况:由上述分析可以得到平均情况下算法的运算次数大约为(n^2)/2(注:这里计算以赋值和比较计,若按移动和比较,则大约为n^2/4),显然,时间复杂度还是O(n^2)。
至于算法的空间复杂度,所有移动均在数据内部进行,唯一的开销是我们引入了一个临时变量(有的数据结构书上称为“哨兵”),因此,其空间复杂度(额外空间)为O(1)。

算法稳定性
由于只需要找到不大于当前数的位置而并不需要交换,因此,直接插入排序是稳定的排序方法。

算法变种
如果待排列的数据比较多,那么每次从后往前找就造成了很大的开销,为了提高查找速度,可以采用二分查找(Binary Search)进行性能优化。由于二分查找的效率很高,保证了O(㏒n)复杂度,在数据比较多或输入数据趋向最坏情况时可以大幅提高查找效率。在有些书上将这种方法称为折半插入排序。它的代码实现比较复杂,以后有时间可以贴出来。
此外,还有2-路插入排序和表插入排序。2-路插入排序是在折半插入排序的基础上进一步改进,其移动次数大为降低,大约为n^2/8。但是,它并不能避免移动次数,也不能降低复杂度级别。表插入排序则完全改变存储结构,不移动记录,但需要维护一个链表,以链表的指针修改代替移动记录。因此,其复杂度仍然是O(n^2)。
有关2-路插入排序和表插入排序,可以参考严蔚敏、吴伟民编著的《数据结构》一书。

算法适用场景
插入排序由于O(n^2)的复杂度,在数组较大的时候不适用。但是,在数据比较少的时候,是一个不错的选择,一般做为快速排序的扩充。例如,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序。又如,在JDK 7 java.util.Arrays所用的sort方法的实现中,当待排数组长度小于47时,会使用插入排序。


更多详解直接插入排序算法与相关的Java版代码实现相关文章请关注PHP中文网!

相关标签: 插入排序 Java