欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

简单介绍Python中利用生成器实现的并发编程

程序员文章站 2022-05-05 09:09:52
...
我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。

多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库,在之前写过的python高可用程序设计方法中提供了类似nginx中master process和worker process间信号处理的方式,保证了业务进程的退出可以被主进程感知。

多线程编程python中有Thread和threading,在linux下所谓的线程,实际上是LWP轻量级进程,其在内核中具有和进程相同的调度方式,有关LWP,COW(写时拷贝),fork,vfork,clone等的资料较多,这里不再赘述。

异步在linux下主要有三种实现select,poll,epoll,关于异步不是本文的重点。

说协程肯定要说yield,我们先来看一个例子:

#coding=utf-8
import time
import sys
# 生产者
def produce(l):
  i=0
  while 1:
    if i  0:
        print l.pop()
    except StopIteration:
      sys.exit(0)
l = []
consume(l)

在上面的例子中,当程序执行到produce的yield i时,返回了一个generator,当我们在custom中调用p.next(),程序又返回到produce的yield i继续执行,这样l中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

通过上面的例子我们看到协程的调度对于内核来说是不可见的,协程间是协同调度的,这使得并发量在上万的时候,协程的性能是远高于线程的。

import stackless
import urllib2
def output():
  while 1:
    url=chan.receive()
    print url
    f=urllib2.urlopen(url)
    #print f.read()
    print stackless.getcurrent()
   
def input():
  f=open('url.txt')
  l=f.readlines()
  for i in l:
    chan.send(i)
chan=stackless.channel()
[stackless.tasklet(output)() for i in xrange(10)]
stackless.tasklet(input)()
stackless.run()

关于协程,可以参考greenlet,stackless,gevent,eventlet等的实现。

简单介绍Python中利用生成器实现的并发编程

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn核实处理。

相关文章

相关视频


网友评论

文明上网理性发言,请遵守 新闻评论服务协议

我要评论
  • 简单介绍Python中利用生成器实现的并发编程
  • 专题推荐

    相关标签: Python