基于python的留一法+朴素贝叶斯分类2021-05-13
程序员文章站
2022-05-04 16:39:49
...
用python进行简单的朴素贝叶斯分类,这里是用性别、体重两个特征预测性别。新手,仅记录,欢迎指导。
import pandas as pd # 导入Python的数据处理库pandas,相当于Python里的excel
import numpy as np
data = pd.read_csv('biyelunwen.csv',encoding='gbk')
# 把data转成一个个的数组,不做这一步直接输data[:,0:2],就会报错
A=np.array(data)
X=A[:,0:2]
y=A[:,2]
# 导入朴素高斯贝叶斯、LOO模块
from sklearn import naive_bayes
from sklearn.model_selection import LeaveOneOut
loo=LeaveOneOut()
clf=naive_bayes.GaussianNB()
right=0
for train_index,test_index in loo.split(data):
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
clf.fit(X_train,y_train)
y_test_pred = clf.predict(X_test)
if y_test_pred==y_test:
right=right+1
else:
right=right+0
# 用X.shape[0]输出X的行数,用X.shape[1]输出X的列数
acc=right/X.shape[0]
print('准确率={:.2f}%'.format(acc*100))
最后结果:
准确率=80.00%
上一篇: Java爬虫-爬取四级词汇网站音频
下一篇: Linux下启动和终止Jar包的脚本