欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

最近最少使用算法(LRU)——页面置换

程序员文章站 2022-05-04 15:16:12
原创 上一篇博客写了先进先出算法(FIFO)——页面置换:http://www.cnblogs.com/chiweiming/p/9058438.html 此篇介绍最近最少使用算法(LRU)——页面置换,与上一篇的代码大同小异,只是用了不同的方法从页面队列 中选出需要淘汰出的页面。 还是辣个栗子: ......

原创


上一篇博客写了先进先出算法(FIFO)——页面置换:

此篇介绍最近最少使用算法(LRU)——页面置换,与上一篇的代码大同小异,只是用了不同的方法从页面队列

中选出需要淘汰出的页面。(题目阐述看我上一篇博客)

还是辣个栗子:

现内存页面为:  15  31  24  17  18  5  9  26  4  21

部分地址流为:  4  31  24  17  18  26  17  5  5  9  31  18  18  21  15  8

页面 8 为下一个需要调入进去的页面,由于内存页面已满,需要使用LRU调出一个最近未被使用页面。

寻找淘汰页面的方式如下:

从页面 8 往前看,遇到与内存页面中相同的页面即把它移除(即不淘汰它),等到移除了 max_page-1 个页面之

后,剩下最后一个未被移除的页面即是需要淘汰出去的。

在上面例子中,依次将 15 21 18 31 9 5 17 26 24 (已经9个),剩下最后一个 4 即是需要淘汰出去的页面。

可以用这样的伪代码去实现:用一个数组 flag 来备份内存页块号中的页面,从 8 往前看,依次将之前的数和数组

里的数比较,若匹配成功,则将数组里面此位置 -1 ,等到置了 max_page-1 个 -1 后跳出;再从 flag 中筛选出不

是 -1 的值(即要淘汰出的页面),再拿此值和当前内存页面队列中的值比较,匹配成功则将此页面调出去,将页

面 8 调入。

#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#define max_page 10    //内存页面数

int Page[320]={0};    //虚拟存储区,存储320条指令,32个页面 
int Page_flu[320]={0};    //存储320个页地址流
int count=0;    //计算随机产生的指令条数
double lack_page=0;    //记录缺页数 
int count_page=max_page;     //计算队列空页面个数 
int flag[max_page+1]={0};    //存储内存块中的页面号 
int ff=0;

struct Memo{    //用结构体存储内存页面块
    int num;     //给每个页面编号,方便将其从队列中找到并调出
    int a;
    struct Memo *next;
};

int Judge_Page(int value){    //输入指令,返回指令对面的页面号 
    return value/10;
}

int scan_queen(struct Memo *hear,int value){    //value代表页面号,扫描队列,缺页返回0,否则返回1
    struct Memo *move;
    move=hear->next;
    while(move!=NULL){
        if(move->a==value){
            return 1;
        }
        move=move->next;
    }
    return 0;
}

void print(struct Memo *hear){    //输出内存页面
    struct Memo *move;
    move=hear->next;
    printf("当前页面队列为: ");
    while(move!=NULL){
        printf("%d ",move->a);
        move=move->next;
    }
    printf("\n");
}

void insert(struct Memo *hear,int value,int ZL,int x){    //将页面value调入内存,ZL为对应指令,x为页面value在页地址流中的序号 
    if(count_page>=1){    //内存页面空间充足
        struct Memo *move;
        move=hear->next;
        while(move->a!=-1){
            move=move->next;
        }
        move->a=value;    //将页面调入
        count_page--;
        printf("页面 %d 被调入————对应指令为: %d \n",value,ZL);
    }
    else{    //内存空间不足,使用LRU选出需调出的页面后,将页面value后调入
        struct Memo *move;
        move=hear->next;
        int i=0;
        for(i=1;i<=max_page;i++){
            flag[i]=move->a;    //将内存块中的页面号放入flag备份 
            move=move->next; 
        }
        int t=0;
        for(t=x-1;t>=0;t--){    //循环结束后flag里面只有一个不为0,把此页面调出即可
            for(i=max_page;i>=1;i--){
                if(Page_flu[t]==flag[i]){
                    flag[i]=-1;
                    ff++;
                    break;
                }
            }
            if(ff==max_page-1){
                break;
            }
        }
        for(i=1;i<=max_page;i++){    //选出被淘汰出的页面号
            if(flag[i]!=-1){
                ff=flag[i];    //备份要淘汰出的页面号 
                break;
            }
        }
        move=hear->next;
        while(move!=NULL){
            if(move->a==ff){
                int j=0;
                printf("前20个地址流为:"); 
                for(j=x-20;j<=x-1;j++){
                    printf("%d ",Page_flu[j]);
                }
                printf("\n");
                printf("页面 %d 被调出,页面 %d 被调入----指令为:%d \n",ff,value,ZL);
                move->a=value;    //将页面插入
                break; 
            }
            move=move->next;
        }
    }
    
    ff=0;
    print(hear);    //调入后输出内存队列 
}

void LRU(struct Memo *hear){
    int i=0;
    for(i=0;i<=319;i++){    //循环扫描页面
        if( scan_queen(hear,Page_flu[i])==0){    //判断是否缺页
            lack_page++;
            insert(hear,Page_flu[i],Page[i],i);    //缺页将页面调入内存
        }
        else{    //不缺页
            printf("指令 %d 对应页面 %d 已在内存\n",Page[i],Page_flu[i]);
        }
        //不缺页无需操作
    }
}

void Pro_Page(){    //形成页地址流函数 
    int m=0;    //在[0,319]的指令地址之间随机选取一起点m
    m=rand()%320;
    
    Page[count]=m;
    count++;
    if(count==320){
        return;
    }
    int m_=0;    //在前地址[0,m+1]中随机选取一条指令并执行
    m_=rand()%(m+1);
    
    Page[count]=m_;
    count++;
    if(count==320){
        return;
    }
    Page[count]=m_+1;
    count++;
    if(count==320){
        return;
    }
    int m__=0;
    m__=(m_+2)+rand()%( 319-(m_+2)+1 );    //在后地址[m_+2,319]的指令地址之间随机选取一条指令并执行
    Page[count]=m__;
    count++;
    if(count==320){
        return;
    }
    
    Pro_Page();
}

void Flu(){    //将指令转换为页地址流
    int i=0;
    for(i=0;i<=319;i++){
        Page_flu[i]=Judge_Page( Page[i] );
    }
}

int main(){
    struct Memo Stu[max_page+1];
    struct Memo *hear;
    hear=&Stu[0];
    //*************************************
    int i=0;
    for(i=0;i<=max_page;i++){    //形成内存页面队列
        if(i==max_page){
            Stu[i].a=-1;
            Stu[i].next=NULL;
            Stu[i].num=i;
            break;
        }
        Stu[i].next=&Stu[i+1];
        Stu[i].a=-1;
        Stu[i].num=i;
    }
    //*************************************
    srand(time(0));    //放在Pro_Page函数外面
    Pro_Page();    //形成页地址流
    Flu();    //形成页地址流 
    /*
    printf("页地址流:\n");
    for(i=0;i<=319;i++){    //输出页地址流
        printf("%d ",Page[i]);
        if(i%3==0 && i!=0){
            printf("\n");
        }
    }
    printf("\n");
    */
    //*************************************
    
    LRU(hear);
    printf("缺页次数为: %0.0lf\n",lack_page);
    printf("命中率为:%lf\n",1-lack_page/320);
    
    return 0;
}

最近最少使用算法(LRU)——页面置换(部分结果截图)

08:31:06

2018-05-22