欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

SimpleITK 图像配准

程序员文章站 2022-05-04 14:41:34
...

SimpleITK 图像配准

在网上找的资源,效果不佳,等清楚了函数和原理再细改,调试效果。

# -*- coding : UTF-8 -*-
# @file   : regist.py
# @Time   : 2021-11-12 17:00
# @Author : wmz

import SimpleITK as sitk

# Utility method that either downloads data from the MIDAS repository or
# if already downloaded returns the file name for reading from disk (cached data).
# %run update_path_to_download_script
# from downloaddata import fetch_data as fdata

# Always write output to a separate directory, we don't want to pollute the source directory.
import os
OUTPUT_DIR = 'Output'

import matplotlib.pyplot as plt
# % matplotlib
# inline

from ipywidgets import interact, fixed
from IPython.display import clear_output


# Callback invoked by the interact IPython method for scrolling through the image stacks of
# the two images (moving and fixed).
def display_images(fixed_image_z, moving_image_z, fixed_npa, moving_npa):
    # Create a figure with two subplots and the specified size.
    plt.subplots(1, 2, figsize=(10, 8))

    # Draw the fixed image in the first subplot.
    plt.subplot(1, 2, 1)
    plt.imshow(fixed_npa[fixed_image_z, :, :], cmap=plt.cm.Greys_r);
    plt.title('fixed image')
    plt.axis('off')

    # Draw the moving image in the second subplot.
    plt.subplot(1, 2, 2)
    plt.imshow(moving_npa[moving_image_z, :, :], cmap=plt.cm.Greys_r);
    plt.title('moving image')
    plt.axis('off')

    plt.show()


# Callback invoked by the IPython interact method for scrolling and modifying the alpha blending
# of an image stack of two images that occupy the same physical space.
def display_images_with_alpha(image_z, alpha, fixed, moving):
    img = (1.0 - alpha) * fixed[:, :, image_z] + alpha * moving[:, :, image_z]
    plt.imshow(sitk.GetArrayViewFromImage(img), cmap=plt.cm.Greys_r);
    plt.axis('off')
    plt.show()


# Callback invoked when the StartEvent happens, sets up our new data.
def start_plot():
    global metric_values, multires_iterations

    metric_values = []
    multires_iterations = []


# Callback invoked when the EndEvent happens, do cleanup of data and figure.
def end_plot():
    global metric_values, multires_iterations

    del metric_values
    del multires_iterations
    # Close figure, we don't want to get a duplicate of the plot latter on.
    plt.close()


# Callback invoked when the IterationEvent happens, update our data and display new figure.
def plot_values(registration_method):
    global metric_values, multires_iterations

    metric_values.append(registration_method.GetMetricValue())
    # Clear the output area (wait=True, to reduce flickering), and plot current data
    clear_output(wait=True)
    # Plot the similarity metric values
    plt.plot(metric_values, 'r')
    plt.plot(multires_iterations, [metric_values[index] for index in multires_iterations], 'b*')
    plt.xlabel('Iteration Number', fontsize=12)
    plt.ylabel('Metric Value', fontsize=12)
    plt.show()


# Callback invoked when the sitkMultiResolutionIterationEvent happens, update the index into the
# metric_values list.
def update_multires_iterations():
    global metric_values, multires_iterations
    multires_iterations.append(len(metric_values))


fixed_image =  sitk.ReadImage(r"E:\Data\right_knee\01-YCQ-cl-L.nrrd", sitk.sitkFloat32)
moving_image = sitk.ReadImage(r"E:\Data\right_knee\02-LAXI-r-cl lv.nrrd", sitk.sitkFloat32)

interact(display_images, fixed_image_z=(0,fixed_image.GetSize()[2]-1), moving_image_z=(0,moving_image.GetSize()[2]-1), fixed_npa = fixed(sitk.GetArrayViewFromImage(fixed_image)), moving_npa=fixed(sitk.GetArrayViewFromImage(moving_image)));


initial_transform = sitk.CenteredTransformInitializer(fixed_image,
                                                      moving_image,
                                                      sitk.Euler3DTransform(),
                                                      sitk.CenteredTransformInitializerFilter.GEOMETRY)

moving_resampled = sitk.Resample(moving_image, fixed_image, initial_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())

interact(display_images_with_alpha, image_z=(0,fixed_image.GetSize()[2]), alpha=(0.0,1.0,0.05), fixed = fixed(fixed_image), moving=fixed(moving_resampled));

registration_method = sitk.ImageRegistrationMethod()

# Similarity metric settings.
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.01)

registration_method.SetInterpolator(sitk.sitkLinear)

# Optimizer settings.
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=100, convergenceMinimumValue=1e-6, convergenceWindowSize=10)
registration_method.SetOptimizerScalesFromPhysicalShift()

# Setup for the multi-resolution framework.
registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0])
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()

# Don't optimize in-place, we would possibly like to run this cell multiple times.
registration_method.SetInitialTransform(initial_transform, inPlace=False)

# Connect all of the observers so that we can perform plotting during registration.
registration_method.AddCommand(sitk.sitkStartEvent, start_plot)
registration_method.AddCommand(sitk.sitkEndEvent, end_plot)
registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, update_multires_iterations)
registration_method.AddCommand(sitk.sitkIterationEvent, lambda: plot_values(registration_method))

final_transform = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32),
                                              sitk.Cast(moving_image, sitk.sitkFloat32))

print('Final metric value: {0}'.format(registration_method.GetMetricValue()))
print('Optimizer\'s stopping condition, {0}'.format(registration_method.GetOptimizerStopConditionDescription()))

moving_resampled = sitk.Resample(moving_image, fixed_image, final_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())

interact(display_images_with_alpha, image_z=(0,fixed_image.GetSize()[2]), alpha=(0.0,1.0,0.05), fixed = fixed(fixed_image), moving=fixed(moving_resampled));

sitk.WriteImage(moving_resampled, os.path.join(OUTPUT_DIR, 'RIRE_training_001_mr_T1_resampled.mha'))
sitk.WriteTransform(final_transform, os.path.join(OUTPUT_DIR, 'RIRE_training_001_CT_2_mr_T1.tfm'))