欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ1061: [Noi2008]志愿者招募(线性规划)

程序员文章站 2022-05-04 13:12:38
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要 Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类 ......
Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 5725  Solved: 3437
[][][]

Description

 

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

  仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

Source

 

如果不知道这题是线性规划的话肯定很难看出来,不过知道了就好做多了

若$C_i$为第$i$个人的花费,$a_i$为第$i$天需要的人,$x_i$为第$i$个人的数量

那么我们需要满足对于每一天$i$,$\sum_{i = 1}^{M} x_i >= a_i$,同时$\sum C_i x_i$最小

啥?最小?当时我推出式子来就蒙了qwq。然后跑去膜题解

根据对偶原理,问题相当于使得$\sum_{i = 1}^{M} x_i <= C_i$,的情况下$\sum a_i x_i$最大

仔细一想好像挺有道理

关于最后答案是否为整数的问题

https://www.luogu.org/problemnew/solution/P3980

 

#include<cstdio>
#include<algorithm>
#include<cmath>
#define LL long long 
using namespace std;
const int MAXN = 51, INF = 1e9 + 10;
const double eps = 1e-8;
inline int read() {
    char c = getchar();int x = 0,f = 1;
    while(c < '0' || c > '9'){if(c == '-')f = -1;c = getchar();}
    while(c >= '0' && c <= '9'){x = x * 10 + c - '0',c = getchar();}
    return x * f;
}
int N, M;
LL a[10001][1001];
void Pivot(int l, int e) {
    double t = a[l][e]; a[l][e] = 1;
    for(int i = 0; i <= N; i++) a[l][i] /= t;
    for(int i = 0; i <= M; i++) {
        if(i != l && abs(a[i][e]) > eps) {
            t = a[i][e]; a[i][e] = 0;
            for(int j = 0; j <= N; j++)
                a[i][j] -= a[l][j] * t;
        }
    }
}
bool simplex() {
    while(1) {
        int l = 0, e = 0; double mn = INF;
        for(int i = 1; i <= N; i++)
            if(a[0][i] > eps) 
                {e = i; break;}
        if(!e) break;
        for(int i = 1; i <= M; i++)
            if(a[i][e] > eps && a[i][0] / a[i][e] < mn)
                mn = a[i][0] / a[i][e], l = i;
        Pivot(l, e);
    }
    return 1;
}
int main() {
    srand(19260817);
    N = read(); M = read();
    for(int i = 1; i <= N; i++) a[0][i] = read();    
    for(int i = 1; i <= M; i++) { 
        int S = read(), T = read(), C = read();
        for(int j = S; j <= T; j++)    
            a[i][j] = 1;
        a[i][0] = C;
    }
    simplex();
    printf("%lld", -a[0][0]);
    return 0;
}