linux中OTG识别到一个U盘后产生一个sg节点的全过程
注:本篇文章暂时不做流程图,如果有需求后续补做。
1. 需要准备的源码文件列表:
base部分:
kernel\base\core.c
kernel\base\bus.c
kernel\base\dd.c
kernel\base\class.c
kernel\base\driver.c
头文件部分:
kernel\include\linux\device.h
kernel\include\linux\usb.h
kernel\include\scsi\scsi_host.h
usb核心部分:
kernel\driver\usb\core\usb.c
kernel\driverusb\core\driver.c
kernel\driverusb\core\hub.c
kernel\driverusb\core\driver.c
kernel\drivers\usb\core\message.c
kernel\drivers\usb\core\generic.c
大容量设备部分:
kernel\driverusb\storage\usb.c
scsi部分:
kernel\driverscsi\scsi_scan.c
kernel\driverscsi\scsi_sysfs.c
kernel\driverscsi\sg.c
2. 当一个u盘插入linux设备前发生的事情:
a. 最开始注册hub部分:
需要关注注册驱动的有hub, usb, usb-storage。hub中用来做检测usb口是否有otg的东东接入,usb是所有usb接入设备的老大哥,usb-storage只是usb的一个小老弟。
翻到 kernel\driver\usb\core\usb.c 源码,这里先注册了hub驱动,再注册了usb驱动。
注:代码中“...”表示忽略这部分的代码,只需要关注贴出来的代码即可。
static int __init usb_init(void)
{
...
retval = usb_hub_init();//注册hub驱动
...
}
先看hub注册过程,打开kernel\driverusb\core\hub.c,
static struct usb_driver hub_driver = {
.name = "hub",
...
};
int usb_hub_init(void)
{
if (usb_register(&hub_driver) < 0) {
printk(kern_err "%s: can't register hub driver\n",
usbcore_name);
return -1;
}
...
}
先关注usb_register,省略的部分后面再关注,打开kernel\include\linux\usb.h,
/* use a define to avoid include chaining to get this_module & friends */
#define usb_register(driver) \
usb_register_driver(driver, this_module, kbuild_modname)
然后进入kernel\driverusb\core\driver.c中的
int usb_register_driver(struct usb_driver *new_driver, struct module *owner,
const char *mod_name)
{
...
new_driver->drvwrap.driver.name = (char *) new_driver->name;
new_driver->drvwrap.driver.bus = &usb_bus_type;
new_driver->drvwrap.driver.probe = usb_probe_interface;
...
retval = driver_register(&new_driver->drvwrap.driver);
if (retval)
goto out;
...
}
export_symbol_gpl(usb_register_driver);
driver_register的实现在kernel\base\driver.c中,
int driver_register(struct device_driver *drv)
{
...
ret = bus_add_driver(drv);
...
}
bus_add_driver的实现在kernel\base\bus.c中,
int bus_add_driver(struct device_driver *drv)
{
...
error = kobject_init_and_add(&priv->kobj, &driver_ktype, null,
"%s", drv->name);
...
klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
...
module_add_driver(drv->owner, drv);
...
}
这段处理大概就是把hub驱动加入到了一个链表中,因为链表就是拿来做数据操作,基本就是增加,删除,修改,遍历查找的,后续用到的时候再讲即可,hub注册部分就是这样了。
b. 注册usb部分:
打开kernel\driver\usb\core\usb.c,就在注册hub驱动的下3行,注册了usb设备驱动,
static int __init usb_init(void)
{
...
retval = usb_register_device_driver(&usb_generic_driver, this_module);
...
}
然后进入kernel\driverusb\core\driver.c中的,
int usb_register_device_driver(struct usb_device_driver *new_udriver,
struct module *owner)
{
...
new_udriver->drvwrap.driver.name = (char *) new_udriver->name;
new_udriver->drvwrap.driver.bus = &usb_bus_type;
new_udriver->drvwrap.driver.probe = usb_probe_device;
...
retval = driver_register(&new_udriver->drvwrap.driver);
...
}
export_symbol_gpl(usb_register_device_driver);
又到了driver_register,最后也就是把usb设备驱动添加到一个链表中,等待着遍历执行的时刻。
c. 注册usb-storage部分:
打开usb\storage\usb.c,这里注册了usb-storage的驱动,这个驱动就是与u盘节点有关的。
static struct usb_driver usb_storage_driver = {
.name = "usb-storage",
...
};
module_usb_driver(usb_storage_driver);
可以看看它的实现,打开kernel\include\linux\usb.h,
#define module_usb_driver(__usb_driver) \
module_driver(__usb_driver, usb_register, \
usb_deregister)
可以在kernel\include\linux\device.h查看module_driver的实现,
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
return __register(&(__driver) , ##__va_args__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
__unregister(&(__driver) , ##__va_args__); \
} \
module_exit(__driver##_exit);
就是一个宏,注册用usb_register,反向注册用usb_deregister,然后再module_init它,就会在开机的时候执行了。至于usb_register,最后也就是把usb-storage驱动添加到一个链表中,等待着遍历执行的时刻。
3. 当一个u盘插入linux设备后:
a. 需要有一个线程等待检测u盘插入,重新回到kernel\driverusb\core\hub.c,
int usb_hub_init(void)
{
...
khubd_task = kthread_run(hub_thread, null, "khubd");
...
}
static int hub_thread(void *__unused)
{
...
do {
hub_events();
wait_event_freezable(khubd_wait,
!list_empty(&hub_event_list) ||
kthread_should_stop());
} while (!kthread_should_stop() || !list_empty(&hub_event_list));
...
}
static void hub_events(void)
{
...
while (1) {
...
hdev = hub->hdev; //这里有一段获取usb驱动设备过程,忽略,因为我还没仔细研究过
...
if (connect_change)
hub_port_connect_change(hub, i,
portstatus, portchange);
}
...
}
static void hub_port_connect_change(struct usb_hub *hub, int port1,
u16 portstatus, u16 portchange)
{
...
/* run it through the hoops (find a driver, etc) */
if (!status) {
status = usb_new_device(udev);
...
}
int usb_new_device(struct usb_device *udev)
{
...
err = device_add(&udev->dev);
...
}
进入到kernel\base\core.c中,
int device_add(struct device *dev)
{
...
bus_probe_device(dev);
...
}
进入到kernel\base\bus.c中,
void bus_probe_device(struct device *dev)
{
...
ret = device_attach(dev);
...
}
进入到kernel\base\dd.c中,
int device_attach(struct device *dev)
{
...
ret = bus_for_each_drv(dev->bus, null, dev, __device_attach);
...
}
int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
void *data, int (*fn)(struct device_driver *, void *))
{
...
error = fn(drv, data);
...
}
static int __device_attach(struct device_driver *drv, void *data)
{
...
return driver_probe_device(drv, dev);
}
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
...
ret = really_probe(dev, drv);
....
}
static int really_probe(struct device *dev, struct device_driver *drv)
{
...
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
...
}
之前链表插入的usb设备驱动的probe就在此刻被遍历出来,然后调用。
回顾插入的函数指针,打开kernel\driverusb\core\driver.c,
int usb_register_device_driver(struct usb_device_driver *new_udriver,
struct module *owner)
{
...
new_udriver->drvwrap.driver.probe = usb_probe_device;
...
}
进入
static int usb_probe_device(struct device *dev)
{
struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);
...
error = udriver->probe(udev);
...
}
由kernel\include\linux\usb.h中:
#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
drvwrap.driver)
和kernel\driver\usb\core\usb.c中:
retval = usb_register_device_driver(&usb_generic_driver, this_module);
可知
这里的probe会调用usb_generic_driver的probe,因为container_of的作用就是把指向d的指针返回,返回的指针即为&usb_generic_driver。
打开kernel\drivers\usb\core\generic.c,
struct usb_device_driver usb_generic_driver = {
.name = "usb",
.probe = generic_probe,
...
};
static int generic_probe(struct usb_device *udev)
{
...
err = usb_set_configuration(udev, c);
...
}
打开kernel\drivers\usb\core\message.c,
int usb_set_configuration(struct usb_device *dev, int configuration)
{
...
ret = device_add(&intf->dev);
...
}
之前提到过device_add->bus_probe_device->device_attach->__device_attach->driver_probe_device->really_probe->传入的设备对应的驱动probe。
在usb_set_configuration或者之前,肯定有一个获取usb-storage驱动信息的过程,总之这次的probe会进入usb_probe_interface,驱动就是之前注册的usb-storage。
打开kernel\driverusb\core\driver.c,
static int usb_probe_interface(struct device *dev)
{
struct usb_driver *driver = to_usb_driver(dev->driver);
...
error = driver->probe(intf, id);
...
}
同之前container_of返回指向p的指针分析的一样,这次返回的指针是&usb_storage_driver。
打开kernel\driverusb\storage\usb.c,
static int storage_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
...
result = usb_stor_probe1(&us, intf, id, unusual_dev);
...
result = usb_stor_probe2(us);
...
}
static struct usb_driver usb_storage_driver = {
.name = "usb-storage",
.probe = storage_probe,
...
};
int usb_stor_probe1(struct us_data **pus,
struct usb_interface *intf,
const struct usb_device_id *id,
struct us_unusual_dev *unusual_dev)
{
...
init_delayed_work(&us->scan_dwork, usb_stor_scan_dwork);
...
}
int usb_stor_probe2(struct us_data *us)
{
...
queue_delayed_work(system_freezable_wq, &us->scan_dwork,
delay_use * hz);
...
}
这段就是usb_stor_probe1中注册了一个延时的工作队列,然后usb_stor_probe2唤醒这个工作队列注册的函数usb_stor_scan_dwork工作。
static void usb_stor_scan_dwork(struct work_struct *work)
{
...
scsi_scan_host(us_to_host(us));
...
}
下一步就是scsi子系统的工作了。
b. sg节点的创建。
打开kernel\driverscsi\scsi_scan.c,
void scsi_scan_host(struct scsi_host *shost)
{
...
async_schedule(do_scan_async, data);
...
}
static void do_scan_async(void *_data, async_cookie_t c)
{
...
scsi_finish_async_scan(data);
}
static void scsi_finish_async_scan(struct async_scan_data *data)
{
...
scsi_sysfs_add_devices(shost);
...
}
static void scsi_sysfs_add_devices(struct scsi_host *shost)
{
...
if (!scsi_host_scan_allowed(shost) ||
scsi_sysfs_add_sdev(sdev) != 0)
__scsi_remove_device(sdev);
}
}
打开kernel\driverscsi\scsi_sysfs.c,
int scsi_sysfs_add_sdev(struct scsi_device *sdev)
{
...
error = device_add(&sdev->sdev_dev);
...
}
注:这里传的是&sdev->sdev_dev,而不是&sdev->sdev_gendev
又到了device_add,这次可不是走really_probe那么简单了,直接show出关键代码,
打开kernel\base\core.c,
int device_add(struct device *dev)
{
...
if (class_intf->add_dev)
class_intf->add_dev(dev, class_intf);
...
}
add_dev会调用哪个class_interface?
打开kernel\driverscsi\sg.c
static int __init
init_sg(void)
{
...
rc = scsi_register_interface(&sg_interface);
...
}
static struct class_interface sg_interface = {
.add_dev = sg_add,
.remove_dev = sg_remove,
};
可知调用的add_dev就是sg_add,所以节点sg就是以下代码创建的。
static int
sg_add(struct device *cl_dev, struct class_interface *cl_intf)
{
...
sdp = sg_alloc(disk, scsidp);
...
}
static sg_device *sg_alloc(struct gendisk *disk, struct scsi_device *scsidp)
{
...
sprintf(disk->disk_name, "sg%d", k);
...
}
源码太多,花了我大把时间才捋清。
大体就是,注册一堆东东,总线(usb)啊,驱动设备(usb)啊,驱动(hub,usb-storage)啊,class(sg_interface)啊等等,然后跑一个线程,检测到需要的东东后,比对注册到特定链表的数据,然后就调用各种probe和注册的接口如add_dev等。
上一篇: 数据中台架构体系浅析