欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对python3 一组数值的归一化处理方法详解

程序员文章站 2022-05-03 20:24:46
1、什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法。如:1,2,3.,那归一化后就是:0,0.5,1 2、归一化步...

1、什么是归一化:

归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法。如:1,2,3.,那归一化后就是:0,0.5,1

2、归一化步骤:

如:2,4,6

(1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值

min = 2; max = 6; r = max - min = 4

(2)数组中每个数都减去最小值

2,4,6 变成 0,2,4

(3)再除去差值r

0,2,4 变成 0,0.5,1

就得出归一化后的数组了

3、用python 把一个矩阵中每列的数字归一化

import numpy as np
 
def autoNorm(data):   #传入一个矩阵
 mins = data.min(0)  #返回data矩阵中每一列中最小的元素,返回一个列表
 maxs = data.max(0)  #返回data矩阵中每一列中最大的元素,返回一个列表
 ranges = maxs - mins #最大值列表 - 最小值列表 = 差值列表
 normData = np.zeros(np.shape(data))  #生成一个与 data矩阵同规格的normData全0矩阵,用于装归一化后的数据
 row = data.shape[0]      #返回 data矩阵的行数
 normData = data - np.tile(mins,(row,1)) #data矩阵每一列数据都减去每一列的最小值
 normData = normData / np.tile(ranges,(row,1)) #data矩阵每一列数据都除去每一列的差值(差值 = 某列的最大值- 某列最小值)
 return normData
 
arr = np.array([[8,7,8],[4,3,1],[6,9,8]])
print(autoNorm(arr))
 
打印结果:
[[ 1.   0.66666667 1.  ]
 [ 0.   0.   0.  ]
 [ 0.5   1.   1.  ]]

以上这篇对python3 一组数值的归一化处理方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。