manacher入门&模板
点击打开链接
Manacher算法
算法总结第三弹 manacher算法,前面讲了两个字符串相算法——kmp和拓展kmp,这次来还是来总结一个字符串算法,manacher算法,我习惯叫他 “马拉车”算法。
相对于前面介绍的两个算法,Manacher算法的应用范围要狭窄得多,但是它的思想和拓展kmp算法有很多共通支出,所以在这里介绍一下。Manacher算法是查找一个字符串的最长回文子串的线性算法。
在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简单来说就是正着读和反着读都是一样的字符串,比如abba,noon等等,一个字符串的最长回文子串即为这个字符串的子串中,是回文串的最长的那个。
计算字符串的最长回文字串最简单的算法就是枚举该字符串的每一个子串,并且判断这个子串是否为回文串,这个算法的时间复杂度为O(n^3)的,显然无法令人满意,稍微优化的一个算法是枚举回文串的中点,这里要分为两种情况,一种是回文串长度是奇数的情况,另一种是回文串长度是偶数的情况,枚举中点再判断是否是回文串,这样能把算法的时间复杂度降为O(n^2),但是当n比较大的时候仍然无法令人满意,Manacher算法可以在线性时间复杂度内求出一个字符串的最长回文字串,达到了理论上的下界。
1.Manacher算法原理与实现
下面介绍Manacher算法的原理与步骤。
首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:
(1)Len数组简介与性质
Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。
对于上面的例子,可以得出Len[i]数组为:
Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。
有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。
(2)Len数组的计算
首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。设P为之前计算中最长回文子串的右端点的最大值,并且设取得这个最大值的位置为po,分两种情况:
第一种情况:i<=P
那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:
那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,由回文串的定义可知,一个回文串反过来还是一个回文串,所以以i为中心的回文串的长度至少和以j为中心的回文串一样,即Len[i]>=Len[j]。因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。
如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。
第二种情况: i>P
如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。
2.时间复杂度分析
Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。
下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。
const int maxn=1000010;
char str[maxn];//原字符串
char tmp[maxn<<1];//转换后的字符串
int Len[maxn<<1];
//转换原始串
int INIT(char *st)
{
int i,len=strlen(st);
tmp[0]='@';//字符串开头增加一个特殊字符,防止越界
for(i=1;i<=2*len;i+=2)
{
tmp[i]='#';
tmp[i+1]=st[i/2];
}
tmp[2*len+1]='#';
tmp[2*len+2]='$';//字符串结尾加一个字符,防止越界
tmp[2*len+3]=0;
return 2*len+1;//返回转换字符串的长度
}
//Manacher算法计算过程
int MANACHER(char *st,int len)
{
int mx=0,ans=0,po=0;//mx即为当前计算回文串最右边字符的最大值
for(int i=1;i<=len;i++)
{
if(mx>i)
Len[i]=min(mx-i,Len[2*po-i]);//在Len[j]和mx-i中取个小
else
Len[i]=1;//如果i>=mx,要从头开始匹配
while(st[i-Len[i]]==st[i+Len[i]])
Len[i]++;
if(Len[i]+i>mx)//若新计算的回文串右端点位置大于mx,要更新po和mx的值
{
mx=Len[i]+i;
po=i;
}
ans=max(ans,Len[i]);
}
return ans-1;//返回Len[i]中的最大值-1即为原串的最长回文子串额长度
}
//以下原创
例题:
为了入侵m*的机器,m__想了很多方法套m*的密码。现在他终于得出了一个重要信息:m*的密码是一个回文串。m__从m*处套出了若干个字符串,m__想知道对于每个字符串,最少可以在字符串最后加多少个字符,使得新字符串有可能成为密码。
数据范围
对于60%的数据 字符串长度≤103
对于100%的数据 字符串长度≤105 数据组数≤10
输入格式
若干行,每行一个字符串
输出格式
若干行,每行一个回文串
样例
in
aaaa
abba
amanaplanacanal
xyz
out
aaaa
abba
amanaplanacanalpanama
xyzyx
题解:
大概的题意是求在一个字符串后最少加几个字符使其成为回文串。一种朴素的算法就是暴搜,但可能会被一些数据卡掉。
标算是 Manachar算法(应该没打错吧),可以在 O(N)的时间内求回文串。方法是枚举每一个对称中心,求出以此为中心的最长回文串,然后维护回文串的右边界。
对于每一不用暴力求长度,可以在之前包含他的回文串中寻找答案。
代码:
#include<bits/stdc++.h>
using namespace std;
char s[1000001],tmp[1000001];
int len,i,mx,po,n,j,a[1000001];
int main(){
while(~scanf("%s",&s)){
memset(a,0,sizeof(a));
len=strlen(s);
tmp[0]='?';
for(i=1;i<=len*2;i+=2){
tmp[i]='#';
tmp[i+1]=s[i/2];
}
tmp[len*2+2]='!';
len=len*2+1;
for(i=1;i<=len;i++){
if(mx>i)a[i]=min(mx-i,a[po*2-i]);
else a[i]=1;
while(tmp[i-a[i]]==tmp[i+a[i]])a[i]++;
if(a[i]+i>mx){
mx=a[i]+i;
po=i;
}
}
for(i=2;i<=len;i++)
if(a[i]+i==len){
j=i;
break;
}
for(i=1;i<=len;i++)if(i%2==0)printf("%c",tmp[i]);
for(i=j-a[j];i>=1;i--)if(i%2==0)printf("%c",tmp[i]);
printf("\n");
}
}