Spark之【RDD编程】详细讲解(No3)——《Action》
本篇博客是Spark之【RDD编程】系列第三篇,为大家带来的是Action的内容。
该系列内容十分丰富,高能预警,先赞后看!
文章目录
4. Action
4.1 reduce(func) 案例
1.作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。
2.需求:创建一个RDD,将所有元素聚合得到结果。
1)创建一个RDD[Int]
scala> val rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at <console>:24
2)聚合RDD[Int]所有元素
scala> rdd1.reduce(_+_)
res50: Int = 55
3)创建一个RDD[String]
scala> val rdd2 = sc.makeRDD(Array(("a",1),("a",3),("c",3),("d",5)))
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[86] at makeRDD at <console>:24
4)聚合RDD[String]所有数据
scala> rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2))
res51: (String, Int) = (adca,12)
4.2 collect()案例
1.作用:在驱动程序中,以数组的形式返回数据集的所有元素。
2.需求:创建一个RDD,并将RDD内容收集到Driver端打印
1)创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
2)将结果收集到Driver端
scala> rdd.collect
res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
4.3 count()案例
1.作用:返回RDD中元素的个数
2.需求:创建一个RDD,统计该RDD的条数
1)创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
2)统计该RDD的条数
scala> rdd.count
res1: Long = 10
4.4 first案例
1.作用:返回RDD中的第一个元素
2.需求:创建一个RDD,返回该RDD中的第一个元素
1)创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
2)统计该RDD的条数
scala> rdd.first
res2: Int = 1
4.5 take(n)案例
1.作用:返回一个由RDD的前n个元素组成的数组
2.需求:创建一个RDD,统计该RDD的条数
1) 创建一个RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
2)统计该RDD的条数
scala> rdd.take(3)
res10: Array[Int] = Array(2, 5, 4)
4.6 takeOrdered(n)案例
1.作用:返回该RDD排序后的前n个元素组成的数组
2.需求:创建一个RDD,统计该RDD的条数
1)创建一个RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
2)统计该RDD的条数
scala> rdd.takeOrdered(3)
res18: Array[Int] = Array(2, 3, 4)
4.7 aggregate案例
1.参数:(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)
2.作用:aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
3.需求:创建一个RDD,将所有元素相加得到结果
1)创建一个RDD
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at <console>:24
2)将该RDD所有元素相加得到结果
scala> rdd.aggregate(0)(_+_,_+_)
res22: Int = 55
4.9 saveAsTextFile(path)
作用:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本。
4.10 saveAsSequenceFile(path)
作用:将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
4.11 saveAsObjectFile(path)
作用:用于将RDD中的元素序列化成对象,存储到文件中。
4.12 countByKey()案例
1.作用:针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
2.需求:创建一个PairRDD,统计每种key的个数
1)创建一个PairRDD
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at <console>:24
2)统计每种key的个数
scala> rdd.countByKey
res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)
4.13 foreach(func)案例
1.作用:在数据集的每一个元素上,运行函数func进行更新。
2.需求:创建一个RDD,对每个元素进行打印
1)创建一个RDD
scala> var rdd = sc.makeRDD(1 to 5,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[107] at makeRDD at <console>:24
2)对该RDD每个元素进行打印
scala> rdd.foreach(println(_))
3
4
5
1
2
本篇内容分享就到这里,受益的小伙伴或对大数据技术感兴趣的朋友记得点赞关注一下哟~下一篇博客No4将为大家带来RDD中的函数传递
的教程,敬请期待!