【Mongodb】视图与索引的使用
准备工作
准备2个集合的数据,后面视图和索引都会用到
1个订单集合,一个收款信息集合
var orders = new array(); var shipping = new array(); var addresses = ["广西省玉林市", "湖南省岳阳市", "湖北省荆州市", "甘肃省兰州市", "吉林省*市", "江西省景德镇", "辽宁省沈阳市", "福建省厦门市", "广东省广州市", "北京市朝阳区"]; for (var i = 10000; i < 20000; i++) { var orderno = i + math.random().tostring().substr(2, 5); orders[i] = { orderno: orderno, userid: i, price: math.round(math.random() * 10000) / 100, qty: math.floor(math.random() * 10) + 1, ordertime: new date(new date().setseconds(math.floor(math.random() * 10000))) }; var address = addresses[math.floor(math.random() * 10)]; shipping[i] = { orderno: orderno, address: address, recipienter: "wilson", province: address.substr(0, 3), city: address.substr(3, 3) } } db.order.insert(orders); db.shipping.insert(shipping);
视图
概述
a mongodb view is a queryable object whose contents are defined by an aggregation pipeline on other collections or views. mongodb does not persist the view contents to disk. a view’s content is computed on-demand when a client queries the view. mongodb can require clients to have permission to query the view. mongodb does not support write operations against views.
mongodb的视图基本上和sql的视图一样
- 数据源(集合或视图)
- 提供查询
- 不实际存储硬盘
- 客户端发起请求查询时计算而得
1. 创建视图
有两种方法创建视图
db.createcollection( "<viewname>", { "viewon" : "<source>", "pipeline" : [<pipeline>], "collation" : { <collation> } } )
db.createview( "<viewname>", "<source>", [<pipeline>], { "collation" : { <collation> } } )
一般使用db.createview
viewname : 必须,视图名称
source : 必须,数据源,集合/视图
[<pipeline>] : 可选,一组管道,可见管道是mongodb比较重要的一环
1.1 单个集合创建视图
假设现在查看当天最高的10笔订单视图,例如后台某个地方需要实时显示金额最高的订单
db.createview( "orderinfo", //视图名称 "order", //数据源 [ //筛选符合条件的订单,大于当天,这里要注意时区 { $match: { "ordertime": { $gte: isodate("2020-04-13t16:00:00.000z") } } }, //按金额倒序 { $sort: { "price": -1 } }, //限制10个文档 { $limit: 10 }, //选择要显示的字段 //0: 排除字段,若字段上使用(_id除外),就不能有其他包含字段 //1: 包含字段 { $project: { _id: 0, orderno: 1, price: 1, ordertime: 1 } } ] )
然后就可以直接使用orderinfo这个视图查询数据
db.orderinfo.find({})
返回结果
{ "orderno" : "1755149436", "price" : 100, "ordertime" : isodate("2020-04-14t13:49:42.220z") } { "orderno" : "1951423853", "price" : 99.99, "ordertime" : isodate("2020-04-14t15:08:07.240z") } { "orderno" : "1196303215", "price" : 99.99, "ordertime" : isodate("2020-04-14t15:15:41.158z") } { "orderno" : "1580069456", "price" : 99.98, "ordertime" : isodate("2020-04-14t13:41:07.199z") } { "orderno" : "1114480559", "price" : 99.98, "ordertime" : isodate("2020-04-14t13:31:58.150z") } { "orderno" : "1229542817", "price" : 99.98, "ordertime" : isodate("2020-04-14t15:15:35.162z") } { "orderno" : "1208031402", "price" : 99.94, "ordertime" : isodate("2020-04-14t14:13:02.160z") } { "orderno" : "1680622670", "price" : 99.93, "ordertime" : isodate("2020-04-14t15:17:25.210z") } { "orderno" : "1549824953", "price" : 99.92, "ordertime" : isodate("2020-04-14t13:09:41.196z") } { "orderno" : "1449930147", "price" : 99.92, "ordertime" : isodate("2020-04-14t15:16:15.187z") }
1.2 多个集合创建视图
其实跟单个是集合是一样,只是多了$lookup连接操作符,视图根据管道最终结果显示,所以可以关联多个集合(若出现这种情况就要考虑集合设计是否合理,mongodb本来就是文档型数据库)
db.orderdetail.drop() db.createview( "orderdetail", "order", [ { $lookup: { from: "shipping", localfield: "orderno", foreignfield: "orderno", as: "shipping" } }, { $project: { "orderno": 1, "price": 1, "shipping.address": 1 } } ] )
查询视图,得到如下结果
{ "_id" : objectid("5e95af8c4ef6faf974b4a6c3"), "orderno" : "1000039782", "price" : 85.94, "shipping" : [ { "address" : "北京市朝阳区" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c4"), "orderno" : "1000102128", "price" : 29.04, "shipping" : [ { "address" : "吉林省*市" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c5"), "orderno" : "1000214514", "price" : 90.69, "shipping" : [ { "address" : "湖南省岳阳市" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c6"), "orderno" : "1000337987", "price" : 75.05, "shipping" : [ { "address" : "辽宁省沈阳市" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c7"), "orderno" : "1000468969", "price" : 76.84, "shipping" : [ { "address" : "江西省景德镇" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c8"), "orderno" : "1000572219", "price" : 60.25, "shipping" : [ { "address" : "江西省景德镇" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6c9"), "orderno" : "1000611743", "price" : 19.14, "shipping" : [ { "address" : "广东省广州市" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6ca"), "orderno" : "1000773917", "price" : 31.5, "shipping" : [ { "address" : "北京市朝阳区" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6cb"), "orderno" : "1000879146", "price" : 76.16, "shipping" : [ { "address" : "吉林省*市" } ] } { "_id" : objectid("5e95af8c4ef6faf974b4a6cc"), "orderno" : "1000945977", "price" : 93.98, "shipping" : [ { "address" : "辽宁省沈阳市" } ] }
可以看到,mongodb不是像sql那样把连接的表当成列列出,而是把连接结果放在数组里面,这很符合mongodb文档型结构。
2. 修改视图
假设现在需要增加一个数量的字段
db.runcommand({ collmod: "orderinfo", viewon: "order", pipeline: [ { $match: { "ordertime": { $gte: isodate("2020-04-13t16:00:00.000z") } } }, { $sort: { "price": -1 } }, { $limit: 10 }, //增加qty { $project: { _id: 0, orderno: 1, price: 1, qty: 1, ordertime: 1 } } ] })
当然,也可以删除视图,重新用db.createview()创建视图
3. 删除视图
db.orderinfo.drop();
索引
概述
indexes support the efficient execution of queries in mongodb. without indexes, mongodb must perform a collection scan, i.e. scan every document in a collection, to select those documents that match the query statement. if an appropriate index exists for a query, mongodb can use the index to limit the number of documents it must inspect.
索引能提供高效的查询,没有索引的查询,mongole执行集合扫描,相当于sql server的全表扫描,扫描每一个文档。
数据存在存储介质上,大多数情况是为了查询,查询的快慢直接影响用户体验,mongodb索引也是空间换时间,添加索引,cud操作都会导致索引重新生成,影响速度。
1. 准备工作
1.1 准备200w条数据
var orderno = 100 * 10000; for (var i = 0; i < 100; i++) { //分批次插入,每次20000条 var orders = new array(); for (var j = 0; j < 20000; j++) { var orderno = orderno++; orders[j] = { orderno: orderno, userid: i + j, price: math.round(math.random() * 10000) / 100, qty: math.floor(math.random() * 10) + 1, ordertime: new date(new date().setseconds(math.floor(math.random() * 10000))) }; } //不需写入确认 db.order.insert(orders, { writeconcern: { w: 0 } }); }
1.2 mongodb的查询计划
db.collection.explain().<method(...)>
一般使用执行统计模式,例如
db.order.explain("executionstats").find({orderno:1000000})
返回的executionstats对象字段说明
部分字段说明
字段 | 说明 |
---|---|
executionsuccess | 是否执行成功 |
nreturned | 返回匹配文档数量 |
executiontimemillis | 执行时间,单位:毫秒 |
totalkeysexamined | 索引检索数目 |
totaldocsexamined | 文档检索数目 |
查看未加索引前查询计划
db.order.explain("executionstats").find({orderno:1000000})
截取部分返回结果,可以看出
- executiontimemillis : 用时1437毫秒
- totaldocsexamined : 扫描文档200w
- executionstages.stage : 集合扫描
"executionstats" : { "executionsuccess" : true, "nreturned" : 1, "executiontimemillis" : 1437, "totalkeysexamined" : 0, "totaldocsexamined" : 2000000, "executionstages" : { "stage" : "collscan",
1.3 查看当前集合统计信息
db.order.stats()
截取部分信息,可以看出现在存储文件大小大概为72m
{ "ns" : "mongo.order", "size" : 204000000, "count" : 2000000, "avgobjsize" : 102, "storagesize" : 74473472,
2. 创建索引
db.order.createindex({ orderno: 1 }, { name: "ix_orderno" })
索引名称不是必须,若不指定,按 字段名称_排序类型组合自动生成,索引名称一旦创建不能修改,若要修改,只能删除索引重新生成索引,建议还是建索引的时候就把索引名称设置好。
2.1 执行查询计划
db.order.explain("executionstats").find({orderno:1000000})
截取部分结果,直观就可以感觉查询速度有了质的提升,再看查询计划更加惊讶
- nreturned : 匹配到1个文档
- executiontimemillis : 0,呃。。
- totalkeysexamined : 总共检索了1个索引
- totaldocsexamined : 总共检索了1个文档
- executionstages.stage : fetch,根据索引去检索指定文档,像sql的index seek
"executionstats" : { "executionsuccess" : true, "nreturned" : 1, "executiontimemillis" : 0, "totalkeysexamined" : 1, "totaldocsexamined" : 1, "executionstages" : { "stage" : "fetch"
这里只介绍最简单的单个字段索引,mongodb还有很多索引
- 复合索引(compound indexes):对多个字段做索引
- 多键索引(multikey indexes): 一个字段多个值做索引,通常是数组
- 全文索引(text indexes): 对文本检索,可以对字段设置不同权重
- 通配符索引(wildcard indexes):可以将对象的所有/指定的值做索引
-
转发请标明出处:https://www.cnblogs.com/wilsonpan/p/12704474.html
上一篇: 黑糖是红糖么这些区别你应该了解
下一篇: NET Excel转换为集合对象