预处理(9):python实现可视化数据集(分析特征相关性)
程序员文章站
2022-05-02 14:23:38
...
探索性数据分析(EDA)是在进行机器学习模型训练之前值得推荐的重要一步。其中:
散点图矩阵,把数据集中不同特征之间的成对相关性在一张 图上直观地表示出来;
关联矩阵来量化和概括变量之间的线性关系,可以把关联矩阵理解为协方差矩阵的修正;
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
df = pd.read_csv('xxx\\housing.data.txt',
header=None,
sep='\s+')
df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS',
'NOX', 'RM', 'AGE', 'DIS', 'RAD',
'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
print(df.head())
# 散点图矩阵
cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
sns.pairplot(df[cols], kind='reg', size=2.5)
plt.tight_layout()
# plt.savefig('images/10_03.png', dpi=300)
plt.show()
# 用关联矩阵查看关系
cm = np.corrcoef(df[cols].values.T)
#sns.set(font_scale=1.5)
# 当annot为True时,在heatmap中每个方格写入数据
# fmt,格式设置
# annot_kws,当annot为True时,可设置各个参数,包括大小,颜色,加粗,斜体字等
# annot_kws={'size':9,'weight':'bold', 'color':'blue'}
# 参数cbar为TRUE即绘制颜色条,为False就不绘制颜色条
# square:是否是正方形
hm = sns.heatmap(cm,
cbar=True,
annot=True,
square=True,
fmt='.2f',
annot_kws={'size': 15},
yticklabels=cols,
xticklabels=cols)
plt.tight_layout()
# plt.savefig('images/10_04.png', dpi=300)
plt.show()
运行结果:
CRIM ZN INDUS CHAS NOX … TAX PTRATIO B LSTAT MEDV
0 0.00632 18.0 2.31 0 0.538 … 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0 0.469 … 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0 0.469 … 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0 0.458 … 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0 0.458 … 222.0 18.7 396.90 5.33 36.2
[5 rows x 14 columns]
运行结果图: