欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

embedding可视化/yale人脸数据集

程序员文章站 2022-05-02 14:02:57
...

环境tensorflow1.1,python3

我们可以把学习向量映射到2维中以便我们观察,其中用到的技术可以参考 t-SNE 降纬技术和PCA。当我们用可视化的方式来观察这些向量,这实际上是非常有用的。
本实验是人脸数据集中,图像经过embedding后在空间可视化

#coding:utf-8
from tensorflow.contrib.tensorboard.plugins import projector
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os
import scipy.io as sio


#加载数据集
#加载数据
def read_data(filename):
    with open(filename,'rb') as f:
        #记载matlab文件
        dict = sio.loadmat(f)
    return dict['fea'],dict['gnd']

train_data,train_labels = read_data('Yale_64x64.mat')

log_dir = 'yalesample'
name_to_visualise_variable = 'yaleembedding'
batch_size = 20
#保存数据
path_for_face_png = os.path.join(log_dir,'newface.png')
path_for_face_data = os.path.join(log_dir,'newface.tsv')

#建立embedding
embedding_var = tf.Variable(train_data,name=name_to_visualise_variable)
#将信息写入log_dir目录下
summary_writer = tf.summary.FileWriter(log_dir)
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
embedding.metadata_path = path_for_face_data
embedding.sprite.image_path = path_for_face_png
embedding.sprite.single_image_dim.extend([64,64])
#将embedding可视化
projector.visualize_embeddings(summary_writer,config)

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess,os.path.join(log_dir,'model.ckpt'),1)

#将图片拼成一张大图
def create_sprite_image(images):
    if isinstance(images, list):
        images = np.array(images)
    img_h = images.shape[1]
    img_w = images.shape[2]
    n_plots = int(np.ceil(np.sqrt(images.shape[0])))


    spriteimage = np.ones((img_h * n_plots ,img_w * n_plots ))

    for i in range(n_plots):
        for j in range(n_plots):
            this_filter = i * n_plots + j
            if this_filter < images.shape[0]:
                this_img = images[this_filter]
                spriteimage[i * img_h:(i + 1) * img_h,
                  j * img_w:(j + 1) * img_w] = this_img

    return spriteimage

#将矩阵转为图片
def vector_to_matrix_face(face_digits):
    return np.reshape(face_digits,(-1,64,64))

#将图片转为黑白
def invert_grayscale(face_digits):
    return 1-face_digits

to_visualise = train_data
to_visualise = vector_to_matrix_face(to_visualise)
to_visualise = invert_grayscale(to_visualise)

sprite_image = create_sprite_image(to_visualise)
plt.imsave(path_for_face_png,sprite_image,cmap='gray')
plt.imshow(sprite_image,cmap='gray')

with open(path_for_face_data,'w') as f:
    f.write('Index\tLabel\n')
    for index,label in enumerate(train_labels):
        f.write('%d\t%d\n' %(index,label))


结果:

PCA:
embedding可视化/yale人脸数据集

t-SNE:
embedding可视化/yale人脸数据集

embedding可视化/yale人脸数据集