Python多线程中阻塞(join)与锁(Lock)的使用方式
程序员文章站
2022-05-02 12:55:20
...
关于阻塞主线程
join的错误用法
Thread.join() 作用为阻塞主线程,即在子线程未返回的时候,主线程等待其返回然后再继续执行.
join不能与start在循环里连用
以下为错误代码,代码创建了5个线程,然后用一个循环**线程,**之后令其阻塞主线程.
threads = [Thread() for i in range(5)]
for thread in threads:
thread.start()
thread.join()
执行过程:
- 第一次循环中,主线程通过start函数**线程1,线程1进行计算.
- 由于start函数不阻塞主线程,在线程1进行运算的同时,主线程向下执行join函数.
- 执行join之后,主线程被线程1阻塞,在线程1返回结果之前,主线程无法执行下一轮循环.
- 线程1计算完成之后,解除对主线程的阻塞.
- 主线程进入下一轮循环,**线程2并被其阻塞…
如此往复,可以看出,本来应该并发的五个线程,在这里变成了顺序队列,效率和单线程无异.
join的正确用法
使用两个循环分别处理start和join函数.即可实现并发.
threads = [Thread() for i in range(5)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
关于线程锁(threading.Lock)
单核CPU+PIL是否还需要锁?
非原子操作 count = count + 1 理论上是线程不安全的.
使用3个线程同时执行上述操作改变全局变量count的值,并查看程序执行结果.
如果结果正确,则表示未出现线程冲突.
使用以下代码测试
# -*- coding: utf-8 -*-
import threading
import time
count = 0
class Counter(threading.Thread):
def __init__(self, name):
self.thread_name = name
super(Counter, self).__init__(name=name)
def run(self):
global count
for i in range(100000):
count = count + 1
counters = [Counter('thread:%s' % i) for i in range(5)]
t1 = time.time()
for counter in counters:
counter.start()
print('count=%s' % count, "consume time:{}".format(time.time() - t1))
执行结果:
count=491648 consume time:0.030451297760009766
可以看到执行结果并不准确,并且每次执行结果都不一样
事实上每次运行结果都不相同且不正确,这证明单核CPU+PIL仍无法保证线程安全,需要加锁.
加锁后的正确代码:
第一种用法
# -*- coding: utf-8 -*-
import threading
import time
count = 0
lock = threading.Lock()
class Counter(threading.Thread):
def __init__(self, name):
self.thread_name = name
self.lock = threading.Lock()
super(Counter, self).__init__(name=name)
def run(self):
global count
# global lock
for i in range(100000):
lock.acquire()
count = count + 1
lock.release()
counters = [Counter('thread:%s' % i) for i in range(5)]
t1 = time.time()
for counter in counters:
counter.start()
counter.join() # 添加join使线程执行完
print('count=%s' % count, "consume time:{}".format(time.time() - t1))
执行结果:
count=500000 consume time:0.10671520233154297
第二种写法
# -*- coding: utf-8 -*-
import threading
import time
count = 0
lock = threading.Lock() # 正确的位置
class Counter(threading.Thread):
def __init__(self, name):
self.thread_name = name
self.lock = threading.Lock() # 此种写法锁不能在此处声明
super(Counter, self).__init__(name=name)
def run(self):
global count
for i in range(100000):
lock.acquire()
count = count + 1
lock.release()
counters = [Counter('thread:%s' % i) for i in range(5)]
t1 = time.time()
mythread = []
for i in range(5):
t = Counter('thread:%s' % i)
mythread.append(t)
t.start()
for counter in mythread:
counter.join()
# time.sleep(1)
print('count=%s' % count, "consume time:{}".format(time.time() - t1))
执行结果
count=500000 consume time:0.7899613380432129
可以明显看出第二种写法比第一种消耗的时间要多
第三种写法:使用with 上下文的方式自动获取锁和释放锁
# -*- coding: utf-8 -*-
import threading
import time
count = 0
lock = threading.Lock()
class Counter(threading.Thread):
def __init__(self, name):
self.thread_name = name
self.lock = threading.Lock()
super(Counter, self).__init__(name=name)
def run(self):
global count
# global lock
for i in range(100000):
with self.lock:
count = count + 1
counters = [Counter('thread:%s' % i) for i in range(5)]
t1 = time.time()
for counter in counters:
counter.start()
counter.join() # 添加join使线程执行完
print('count=%s' % count, "consume time:{}".format(time.time() - t1))
执行结果:
count=500000 consume time:0.12868905067443848
可以看出执行结果和第一种写法几乎是一样的
推荐阅读
-
荐 Java中多线程的使用(超级超级详细)线程安全+线程锁原理解析+保证线程安全的三种方式 (同步代码块+同步方法+lock锁) 5
-
Python多线程中阻塞(join)与锁(Lock)使用误区解析
-
Python多线程中阻塞(join)与锁(Lock)使用误区解析
-
Python多线程中阻塞(join)与锁(Lock)的使用方式
-
Python多线程中阻塞(join)与锁(Lock)的使用误区
-
Python多线程中阻塞(join)与锁(Lock)使用误区解析
-
荐 Java中多线程的使用(超级超级详细)线程安全+线程锁原理解析+保证线程安全的三种方式 (同步代码块+同步方法+lock锁) 5
-
Python多线程中阻塞(join)与锁(Lock)使用误区解析